首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genotypic interaction between wheat resistance genes H3, H6, H7H8, H9 and virulence genes vH3, vH6, vH7vH8, vH9 of Hessian fly, Mayetiola destructor (Say), was studied in a growth chamber. Results showed that plants homozygous and heterozygous for the H3 gene expressed a high level of resistance against homozygous avirulent and heterozygous larvae carrying the vH3 virulence allele. The H7H8 genes were highly effective in the homozygous condition, but displayed a reduced level of resistance in the heterozygous condition. The H6 and H9 genes showed different levels of resistance against the reciprocal heterozygous larvae (vH6(a)vH6(A) versus vH6(A)vH6(a) and vH9(a)vH9(A) versus vH9(A)vH9(a)). Adults reared from vH6(a)vH6(A) and vH9(a)vH9(A) larvae were all males, consistent with the vH6 and vH9 X-linkage. Plants homozygous for H3, H6, H7H8, and H9 allowed for greater larval survival of heterozygous larvae, which suggests that avirulence to these resistance genes is incompletely dominant. Greater survival of homozygous avirulent larvae on heterozygous plants (H3h3, H6h6, H7h7H8h8, H9h9) suggests incomplete dominance of these wheat genes. Survival of heterozygous along with homozygous virulent larvae would reduce selection pressure for virulence in Hessian fly populations infesting fields of resistant wheat cultivars. This would be expected to slow the increase in frequency of virulence alleles that often results from deployment of resistant cultivars.  相似文献   

2.
Plant pathogen effectors encoded by Avirulence (Avr) genes benefit the pathogen by promoting colonization and benefit plants that have a matching resistance (R) gene by constituting a signal that triggers resistance. The Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), resembles a plant pathogen in showing R/Avr interactions. Because of these interactions, a wheat plant with the H13 resistance gene can be resistant or susceptible depending on the genotype of the larva that attacks the plant, being resistant if attack comes from a larva with a functional vH13 gene, but susceptible if attack comes from a larva with a non‐functional vH13 gene. In this study we asked: does this susceptible interaction involving plants with H13 look like susceptible interactions with plants lacking H13? Possibly, the H13 plant attacked by a larva with a non‐functional vH13 is induced to partial rather than complete resistance. Or the larva, lacking its vH13‐encoded effector, is compromised in its ability to induce susceptibility, which includes forcing the plant to create a gall nutritive tissue. Responses of epidermal cells to larval attack were explored using imaging techniques (light microscopy, scanning and transmission electron microscopy). Whole‐organism responses were investigated by measuring the growth of plants and larvae. No evidence was found for partial resistance responses by H13 plants or for a compromise in the ability of vH13 loss‐of‐function larvae to induce susceptibility. It appears that disrupting vH13 function is sufficient for overcoming the induced resistance mediated by the H13 gene.  相似文献   

3.
Chromosome landing near avirulence gene vH13 in the Hessian fly.   总被引:5,自引:0,他引:5  
AFLP markers in linkage disequilibrium with vH13, an avirulence gene in the Hessian fly (Mayetiola destructor) that conditions avirulence to resistance gene H13 in wheat (Triticum spp.), were discovered by bulked segregant analysis. Five AFLPs were converted into codominant site-specific markers that genetically mapped within 13 cM of this gene. Flanking markers used as probes positioned vH13 near the telomere of the short arm of Hessian fly chromosome X2. These results suggest that the X-linked avirulence genes vH6, vH9, and vH13 are present on Hessian fly chromosome X2 rather than on chromosome X1 as reported previously. Genetic complementation demonstrated that recessive alleles of vH13 were responsible for the H13-virulence observed in populations derived from four different states in the U.S.A.: Georgia, Maryland, Virginia, and Washington. Results support the hypothesis that a gene-for-gene interaction exists between wheat and Hessian fly.  相似文献   

4.
Knight RD  Shimeld SM 《Genome biology》2001,2(5):research0016.1-research00168
Background:Identification of orthologous relationships between genes from widely divergent taxa allows partial reconstruction of the gene complement of ancestral genomes. C2H2 zinc-finger genes are one of the largest and most complex gene superfamilies in metazoan genomes, with hundreds of members in the human genome. Here we analyze C2H2 zinc-finger genes from three taxa - Drosophila, Caenorhabditis elegans and human - from which near-complete genome sequence data are available.Results:Our analyses conclusively identify 39 families of genes, of which 38 can be defined as orthology groups in that they are descended from single ancestral genes in the common ancestor of Drosophila, C. elegans and humans.Conclusions:On the basis of current metazoan phylogeny, these 39 groups represent the minimum complement of C2H2 zinc-finger genes present in the genome of the bilaterian common ancestor.  相似文献   

5.
6.
7.
The discovery of several new loci for resistance to Hessian fly was reported here. QHf.uga-6AL, the late HR61 was recognized from wheat cultivar 26R61 on the distal end of 6AL with resistance to both biotypes E and vH13. It is the first gene or QTL found on this particular chromosome. QHf.uga-3DL and QHf.uga-1AL, physically assigned to the deletion bins 3DL2-0.27–0.81 and 1AL1-0.17–0.61, respectively, were detected for resistance to biotype vH13. Both QTL should represent new loci for Hessian fly resistance and the latter was detectable only in the late seedling stage when tolerance was evident. In addition, QHf.uga-6DS-C and QHf.uga-1AS had minor effect and were identified from the susceptible parent AGS 2000 for resistance to biotype E and vH13, respectively. QHf.uga-6DS-C is different from the known gene H13 on 6DS and QHf.uga-1AS is different from H9 gene cluster on 1AS. These loci also might be new components of Hessian fly resistance, although their LOD values were not highly significant. The QTL detections were all conducted on a RIL mapping population of 26R61/AGS 2000 with good genome coverage of molecular markers. The strategy used in the current study will serve as a good starting point for the discovery and mapping of resistance genes including tolerance to the pest and the closely linked markers will certainly be useful in selecting or pyramiding of these loci in breeding programs.  相似文献   

8.
9.
The only eukaryotic mRNAs that are not polyadenylated are the replication-dependent histone mRNAs in metazoans. The sea urchin genome contains two sets of histone genes that encode non-polyadenylated mRNAs. One of these sets is a tandemly repeated gene cluster with a 5.6-kb repeat unit containing one copy of each of the five alpha-histone genes and is present as a single large cluster which spans over 1 Mb. There is a second set of genes, consisting of 39 genes, containing two histone H1 genes, 34 genes encoding core histone proteins (H2a, H2b, H3 and H4) and three genes expressed only in the testis. Unlike vertebrates where these genes are clustered, the sea urchin late histone genes, expressed in embryos, larvae and adults, are dispersed throughout the genome. There are also genes encoding polyadenylated histone mRNAs, which encode histone variants, including all variants found in other metazoans, as well as a unique set of five cleavage stage histone proteins expressed in oocytes. The cleavage stage histone H1 is the orthologue of an oocyte-specific histone H1 protein found in vertebrates.  相似文献   

10.
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses a segmented and dispersed genome that is located on chromosome(s) of its symbiotic endoparasitic wasp, C. plutellae. When the host wasp parasitizes larvae of the diamondback moth, Plutella xylostella, at least 27 viral genome segments are delivered to the parasitized host along with the wasp egg. The parasitized P. xylostella exhibits significant immunosuppression and a prolonged larval development. Parasitized larvae take about 2 days longer than nonparasitized larvae to develop until the wandering stage of the final larval instar, and die after egress of the full grown wasp larvae. Developmental analysis using juvenile hormone and ecdysteroid analogs suggests that altering endocrine signals could induce the retardation of larval developmental rate in P. xylostella. In this study we used a transient expression technique to micro-inject individual CpBV genome segments, and tested their ability to induce delayed larval development of P. xylostella. We demonstrated that a CpBV segment was able to express its own encoded genes when it was injected into nonparasitized larvae, in which the expression patterns of the segment genes were similar to those in the larvae parasitized by C. plutellae. Twenty three CpBV genome segments were individually cloned and injected into the second instar larvae of P. xylostella and their effects assessed by measuring the time taken for host development to the cocooning stage. Three CpBV genome segments markedly interfered with the host larval development. When the putative genes of these segments were analyzed, it was found that they did not share any common genes. Among these segments able to delay host development, segment S27 was predicted to encode seven protein tyrosine phosphatases (CpBV-PTPs), some of which were mutated by insertional inactivation with transposons, while other encoded gene expressions were unaffected. The mutant segments were unable to induce prolonged larval development of P. xylostella. These results suggest that CpBV can induce prolonged larval development of P. xylostella, and that at least some CpBV-PTPs may contribute to the parasitic role probably by altering titers of developmental hormones.  相似文献   

11.
Three X-linked avirulence genes, vH6, vH9, and vH13 in the Hessian fly, Mayetiola destructor, confer avirulence to Hessian fly resistance genes H6, H9, and H13 in wheat. We used a combination of two- and three-point crosses to determine the order of these genes with respect to each other, the white eye mutation and three X-linked molecular markers, G15-1, 020, and 021, developed from genomic lambda clones, lambda G15-1, lambda 020, and lambda 021. The gene order was determined to be vH9-vH6-G15-1-w-vH13-020-021. In situ hybridization of lambda G15-1, lambda 020, and lambda 021, on the polytene chromosomes of the Hessian fly salivary gland established their orientation on Hessian fly chromosome X1. Based on the size of the Hessian fly genome, and the genetic distances between markers, the relationship of physical to genetic distance was estimated at no more than 300 kb/cM along Hessian fly chromosome X1, suggesting that map-based cloning of these avirulence genes will be feasible.  相似文献   

12.
13.
14.
《Genomics》2021,113(5):3185-3197
Group A PP2C (PP2CA) genes form a gene subfamily whose members play an important role in regulating many biological processes by dephosphorylation of target proteins. In this study we examined the effects of evolutionary changes responsible for functional divergence of BnaABI1 paralogs in Brassica napus against the background of the conserved PP2CA gene subfamily in Brassicaceae. We performed comprehensive phylogenetic analyses of 192 PP2CA genes in 15 species in combination with protein structure homology modeling. Fundamentally, the number of PP2CA genes remained relatively constant in these taxa, except in the Brassica genus and Camelina sativa. The expansion of this gene subfamily in these species has resulted from whole genome duplication. We demonstrated a high degree of structural conservation of the PP2CA genes, with a few minor variations between the different PP2CA groups. Furthermore, the pattern of conserved sequence motifs in the PP2CA proteins and their secondary and 3D structures revealed strong conservation of the key ion-binding sites. Syntenic analysis of triplicated regions including ABI1 paralogs revealed significant structural rearrangements of the Brassica genomes. The functional and syntenic data clearly show that triplication of BnaABI1 in B. napus has had an impact on its functions, as well as the positions of adjacent genes in the corresponding chromosomal regions. The expression profiling of BnaABI1 genes showed functional divergence, i.e. subfunctionalization, potentially leading to neofunctionalization. These differences in expression are likely due to changes in the promoters of the BnaABI1 paralogs. Our results highlight the complexity of PP2CA gene subfamily evolution in Brassicaceae.  相似文献   

15.
Protein phosphatase 2Cs (PP2Cs) belong to the largest protein phosphatase family in plants. Some members have been described as being negative modulators of plant growth and development, as well as responses to hormones and environmental stimuli. However, little is known about the members of PP2C clade D, which may be involved in the regulation of signaling pathways, especially in response to saline and alkali stresses. Here, we identified 13 PP2C orthologs from the wild soybean (Glycine soja) genome. We examined the sequence characteristics, chromosome locations and duplications, gene structures, and promoter cis-elements of the PP2C clade D genes in Arabidopsis and wild soybean. Our results showed that GsPP2C clade D (GsAPD) genes exhibit more gene duplications than AtPP2C clade D genes. Plant hormone and abiotic stress-responsive elements were identified in the promoter regions of most PP2C genes. Moreover, we investigated their expression patterns in roots, stems, and leaves. Quantitative real-time PCR analyses revealed that the expression levels of representative GsPP2C and AtPP2C clade D genes were significantly influenced by alkali and salt stresses, suggesting that these genes might be associated with or directly involved in the relevant stress signaling pathways. Our results established a foundation for further functional characterization of PP2C clade D genes in the future.  相似文献   

16.
Summary A 1.6-kb fragment of DNA from the thermophilic, methane-producing, anaerobic archaebacteriumMethanobacterium thermoautotrophicum H has been cloned and sequenced. This DNA complements mutations in both the purE1 and purE2 loci ofEscherichia coli. The sequence of theM. thermoautotrophicum DNA predicts that complementation inE. coli results from the synthesis of a polypeptide with a molecular weight of 36,249. A polypeptide apparently of this molecular weight is synthesized inE. coli minicells containing recombinant plasmids that carry the cloned fragment of methanogen DNA. We have previously cloned and sequenced a purE-complementing gene from the mesophilic methanogenMethanobrevibacter smithii. The two methanogen-derived purE-complementing genes are 53% homologous and encode polypeptides that are 45% homologous in their amino acid sequences but would be 74% homologous if conservative amino acid substitutions were considered as maintaining sequence homology. The genome ofM. thermoautotrophicum has a molar G+C content of 49.7%, whereas the genome ofM. smithii is 30.6% G+C. Conservation of encoded amino acids while accommodating the very different G+C contents is accomplished by use of different codons that encode the same amino acid. The majority of base changes occur at the third codon position. The intergenic regions of the clonedM. thermoautotrophicum DNA contain sequences previously identified as ribosome binding sites and as putative methanogen promoters. Although the two purE-complementing genes are apparently derived from a common ancestor, only the gene fromM. smithii maintains a codon usage that conforms to the RNY rule.  相似文献   

17.
18.
BackgroundWe have previously shown that high fat (HF) feeding during pregnancy primes the development of non-alcoholic steatohepatits (NASH) in the adult offspring. However, the underlying mechanisms are unclear.AimsSince the endogenous molecular clock can regulate hepatic lipid metabolism, we investigated whether exposure to a HF diet during development could alter hepatic clock gene expression and contribute to NASH onset in later life.MethodsFemale mice were fed either a control (C, 7% kcal fat) or HF (45% kcal fat) diet. Offspring were fed either a C or HF diet resulting in four offspring groups: C/C, C/HF, HF/C and HF/HF. NAFLD progression, cellular redox status, sirtuin expression (Sirt1, Sirt3), and the expression of core clock genes (Clock, Bmal1, Per2, Cry2) and clock-controlled genes involved in lipid metabolism (Rev-Erbα, Rev-Erbβ, RORα, and Srebp1c) were measured in offspring livers.ResultsOffspring fed a HF diet developed NAFLD. However HF fed offspring of mothers fed a HF diet developed NASH, coupled with significantly reduced NAD+/NADH (p < 0.05, HF/HF vs C/C), Sirt1 (p < 0.001, HF/HF vs C/C), Sirt3 (p < 0.01, HF/HF vs C/C), perturbed clock gene expression, and elevated expression of genes involved lipid metabolism, such as Srebp1c (p < 0.05, C/HF and HF/HF vs C/C).ConclusionOur results suggest that exposure to excess dietary fat during early and post-natal life increases the susceptibility to develop NASH in adulthood, involving altered cellular redox status, reduced sirtuin abundance, and desynchronized clock gene expression.  相似文献   

19.
20.
The bacterial type VI secretion system (T6SS) is a supra-molecular complex akin to bacteriophage tails, with VgrG proteins acting as a puncturing device. The Pseudomonas aeruginosa H1-T6SS has been extensively characterized. It is involved in bacterial killing and in the delivery of three toxins, Tse1–3. Here, we demonstrate the independent contribution of the three H1-T6SS co-regulated vgrG genes, vgrG1abc, to bacterial killing. A putative toxin is encoded in the vicinity of each vgrG gene, supporting the concept of specific VgrG/toxin couples. In this respect, VgrG1c is involved in the delivery of an Rhs protein, RhsP1. The RhsP1 C terminus carries a toxic activity, from which the producing bacterium is protected by a cognate immunity. Similarly, VgrG1a-dependent toxicity is associated with the PA0093 gene encoding a two-domain protein with a putative toxin domain (Toxin_61) at the C terminus. Finally, VgrG1b-dependent killing is detectable upon complementation of a triple vgrG1abc mutant. The VgrG1b-dependent killing is mediated by PA0099, which presents the characteristics of the superfamily nuclease 2 toxin members. Overall, these data develop the concept that VgrGs are indispensable components for the specific delivery of effectors. Several additional vgrG genes are encoded on the P. aeruginosa genome and are not linked genetically to other T6SS genes. A closer inspection of these clusters reveals that they also encode putative toxins. Overall, these associations further support the notion of an original form of secretion system, in which VgrG acts as the carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号