首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The trace biogenic amines tyramine and octopamine are found in the nervous systems of animals ranging in complexity from nematodes to mammals. In insects such as Drosophila melanogaster, the trace amine octopamine is a well-established neuromodulator that mediates a diverse range of physiological processes, but an independent role for tyramine is less clear. Tyramine is synthesized from tyrosine by the enzyme tyrosine decarboxylase (TDC). We previously reported the identification of two Tdc genes in Drosophila: the peripherally-expressed Tdc1 and the neurally-expressed Tdc2. To further clarify the neural functions of the trace amines in Drosophila, we examined normal and cocaine-induced locomotor activity in flies that lack both neural tyramine and octopamine because of mutation in Tdc2 (Tdc2(RO54)). Tdc2(RO54) flies have dramatically reduced basal locomotor activity levels and are hypersensitive to an initial dose of cocaine. Tdc2-targeted expression of the constitutively active inward rectifying potassium channel Kir2.1 replicates these phenotypes, and Tdc2-driven expression of Tdc1 rescues the phenotypes. However, flies that contain no measurable neural octopamine and an excess of tyramine due to a null mutation in the tyramine beta-hydroxylase gene (TbetaH(nM18)) exhibit normal locomotor activity and cocaine responses in spite of showing female sterility due to loss of octopamine. The ability of elevated levels of neural tyramine in TbetaH(nM18) flies to supplant the role of octopamine in adult locomotor and cocaine-induced behaviors, but not in functions related to female fertility, indicates mechanistic differences in the roles of trace amines in these processes.  相似文献   

2.
Drosophila is by far the most advanced model to understand the complex biochemical interactions upon which circadian clocks rely. Most of the genes that have been characterized so far were isolated through genetic screens using the locomotor activity rhythms of the adults as a circadian output. In addition, new techniques are available to deregulate gene expression in specific cells, allowing to analyze the growing number of developmental genes that also play a role as clock genes. However, one of the major challenges in circadian biology remains to properly interpret complex behavioral data and use them to fuel molecular models. This review tries to describe the problems that clockwatchers have to face when using Drosophila activity rhythms to understand the multiple facets of circadian function.  相似文献   

3.
The genetic, molecular and anatomical dissection of the circadian clock in Drosophila and other higher organisms relies on the quantification of rhythmic phenotypes. Here, we introduce the methods currently in use in our laboratories for the analysis of fly locomotor activity rhythms. This phenotype provides a relatively simple, automated, efficient, reliable and robust output for the circadian clock. Thus it is not surprising that it is the preferred readout for measuring rhythmicity under a variety of conditions for most fly clock laboratories. The procedure requires at least 10 days of data collection and several days for analysis. In this protocol we advise on fly maintenance and on experimental design when studying the genetics of behavioral traits. We describe the setup for studying locomotor activity rhythms in the fruit fly and we introduce the statistical methods in use in our laboratories for the analysis of periodic data.  相似文献   

4.
A larval feeding assay for detection of nematode anthelmintic resistance to macrocyclic lactones and imidazothiazoles is described. The estimated concentration of anthelmintic required to inhibit larval feeding in 50% of L1's (IC50) that were resistant to either macrocyclic lactones or imidazothiazoles were significantly higher (P < or = 0.05) than those of susceptible isolates. Some variations in IC50 values were observed during the patent period of infection in all strains, although the pattern of the IC50 followed the same course. IC50 values varied in larvae developing from eggs shed throughout the patent period, with low values in the earliest larvae followed by higher values as the infection progressed, before decreasing at 70-90 days post-infection, although the low values of the first part of the patent period were not reached. However, the IC50 differences between all resistant and susceptible strains were significant throughout the whole patent period for ivermectin and levamisole. These results suggest that this technique may provide an alternative in vitro to detect anthelmintic resistance.  相似文献   

5.
The task of the visual system is to translate light into neuronal encoded information. This translation of photons into neuronal signals is achieved by photoreceptor neurons (PRs), specialized sensory neurons, located in the eye. Upon perception of light the PRs will send a signal to target neurons, which represent a first station of visual processing. Increasing complexity of visual processing stems from the number of distinct PR subtypes and their various types of target neurons that are contacted. The visual system of the fruit fly larva represents a simple visual system (larval optic neuropil, LON) that consists of 12 PRs falling into two classes: blue-senstive PRs expressing Rhodopsin 5 (Rh5) and green-sensitive PRs expressing Rhodopsin 6 (Rh6). These afferents contact a small number of target neurons, including optic lobe pioneers (OLPs) and lateral clock neurons (LNs). We combine the use of genetic markers to label both PR subtypes and the distinct, identifiable sets of target neurons with a serial EM reconstruction to generate a high-resolution map of the larval optic neuropil. We find that the larval optic neuropil shows a clear bipartite organization consisting of one domain innervated by PRs and one devoid of PR axons. The topology of PR projections, in particular the relationship between Rh5 and Rh6 afferents, is maintained from the nerve entering the brain to the axon terminals. The target neurons can be subdivided according to neurotransmitter or neuropeptide they use as well as the location within the brain. We further track the larval optic neuropil through development from first larval instar to its location in the adult brain as the accessory medulla.  相似文献   

6.
The temporal pattern of locomotor activity of single Drosophila melanogaster flies freely walking in small tubes is described. Locomotor activity monitored by a light gate has a characteristic time-course that depends upon age and the environmental conditions. Several methods are applied to assess the complexity of the temporal pattern. The pattern varies according to sex, genotype, age and environmental conditions (food; light). Activity occurs clustered in bouts. The intrinsic bout structure is quantified by four parameters: number of light gate passages (counts) per bout, duration of a bout, pause between two successive bouts and mean bout period. In addition, the distribution of the periods between light-gate crossings (inter-count intervals) as function of inter-count interval duration reveals a power law, suggesting that the overall distribution of episodes of activity and inactivity has a fractal structure. In the dark without food, the fractal dimension which represents a measure of the complexity of the pattern is sex, genotype and age specific. Fractality is abolished by additional sensory stimulation (food; light). We propose that time-course, bout structure and fractal dimension of the temporal pattern of locomotor activity describe different aspects of the fly's central pattern generator for locomotion and its motivational control. Accepted: 10 October 1998  相似文献   

7.
Serotonin (5HT) is a modulator of many vital processes in the spinal cord (SC), such as production of locomotion. In the larval zebrafish, intraspinal serotonergic neurons (ISNs) are a source of spinal 5HT that, despite the availability of numerous genetic and optical tools, has not yet been directly shown to affect the spinal locomotor network. In order to better understand the functions of ISNs, we used a combination of strategies to investigate ISN development, morphology, and function. ISNs were optically isolated from one another by photoconverting Kaede fluorescent protein in individual cells, permitting morphometric analysis as they developed in vivo. ISN neurite lengths and projection distances exhibited the greatest amount of change between 3 and 4 days post‐fertilization (dpf) and appeared to stabilize by 5 dpf. Overall ISN innervation patterns were similar between cells and between SC regions. ISNs possessed rostrally‐extending neurites resembling dendrites and a caudally‐extending neurite resembling an axon, which terminated with an enlarged growth cone‐like structure. Interestingly, these enlargements remained even after neurite extension had ceased. Functionally, application of exogenous 5HT reduced spinally‐produced motor nerve bursting. A selective 5HT reuptake inhibitor and ISN activation with channelrhodopsin‐2 each produced similar effects to 5HT, indicating that spinally‐intrinsic 5HT originating from the ISNs has an inhibitory effect on the spinal locomotor network. Taken together this suggests that the ISNs are morphologically mature by 5 dpf and supports their involvement in modulating the activity of the spinal locomotor network. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018  相似文献   

8.
ABSTRACT. Cave-crickets of the genus Troglophilus exhibit a slope dependent gating of locomotor behaviour (Kastberger, 1982), which is mainly expressed by a suppression of evasive jumping on inclined surfaces. A similar dependence of the jumpting rate on the ground inclination to that seen in the cave-cricket can be shown in the African cricket Phaeophyllacris and in the grasshopper Chorthippus. They differ only in the basic motivation for jumping. In this study, free-moving and tethered cave-crickets were studied to elucidate the inclination-sensitive control of gating locomotor activity. Cave-crickets with cauterized tarsal nerves exhibit only a 20% reduction in jumpting rate at slopes up to 45 compared with intact crickets. Freely moving crickets with compensated body weights show a suppression of evasive jumping which is complete if the vertical force overrides the body weight. Dorsally tethered cave-crickets which contact a rotary globe with their tarsi, show a significant increase in the latency of jerking beyond 60 inclination. Crickets placed on a floating boat and partially fixed respond to both static and dynamic forces applied to the longitudinal axis of the cricket. Static towing forces induce passive movements and the rate of active balancing are linearly correlated to the force applied. Under dynamic forces the rate of balancing is dependent on the longitudinal position of the legs and on the direction of force. This basic relation is changed by additional stimulation such as light and vibration. Locomotor activity is gated in a different mode, if the light interval is placed during forward or during backward forcing. Light-off suppresses locomotor activity. The results of dynamic forcing suggest the existence of a gain control which might be responsible for modal and temporal effects in gating locomotion.  相似文献   

9.
Abstract.  Drosophila larval muscles are commonly used for developmental assessment in regard to various mutations of synaptically relevant molecules. In addition, the molecular sequence of the glutamate receptors on the muscle fibre have been described; however, the pharmacological profiles to known agonists and antagonists have yet to be reported. Here, the responses of N -methyl- d -aspartic acid, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA), l -glutamate, kainate, quisqualic acid, NBQX, AP5 and DNQX are characterized with regard to synaptic transmission and direct effects on the muscle fibres. The muscle fibres depolarize to application of glutamate or quisqualate and the excitatory postsynaptic potential (EPSP) amplitudes are diminished. Kainate does not alter the muscle membrane potential but does reduce the EPSP amplitude. The known antagonists NBQX, AP5 and DNQX have no substantial effect on synaptic transmission at 1 m m , nor do they block the response of quisqualate. Kainate may be acting as a postsynaptic antagonist or via autoreceptors presynaptically to reduce evoked transmission.  相似文献   

10.
Seven generations of selection for high and low spontaneous locomotor activity were made in the wild-laboratory strain Oregon of Drosophila melanogaster. Great care was taken to select for activity and not for reactivity. In opposition with the non totally unambiguous results obtained by another author, absolutely no response to selection could be obtained. Thus the Oregon strain of Drosophila melanogaster does not appear to possess any additive genetic variance for spontaneous locomotor activity. Yet before taking for granted that that conclusion is applicable to all strains of Drosophila melanogaster an experimental selection should be performed again using a freshly captured wild strain.  相似文献   

11.
《Fly》2013,7(4):290-297
Neuropeptides are ubiquitous in both mammals and invertebrates and play essential roles in regulation and modulation of many developmental and physiological processes through activation of G-protein-coupled-receptors (GPCRs). However, the mechanisms by which many of the neuropeptides regulate specific neural function and behaviors remain undefined. Here we investigate the functions of Drosulfakinin (DSK), the Drosophila homolog of vertebrate neuropeptide cholecystokinin (CCK), which is the most abundant neuropeptide in the central nervous system. We provide biochemical evidence that sulfated DSK-1 and DSK-2 activate the CCKLR-17D1 receptor in a cell culture assay. We further examine the role of DSK and CCKLR-17D1 in the regulation of larval locomotion, both in a semi-intact larval preparation and in intact larvae under intense light exposure. Our results suggest that DSK/CCKLR-17D1 signaling promote larval body wall muscle contraction and is necessary for mediating locomotor behavior in stress-induced escape response.  相似文献   

12.
The effects of royal jelly (RJ) appear to be conserved in Drosophila; flies exposed of RJ exhibit increased body size, similar to queen bees. However, in flies and bees, there is evidence that increased body size can lead to impairments to locomotor activity, while RJ may have anti-fatigue properties. Canton-S and Oregon-R Drosophila larvae were raised on media containing 0% or 20% pure RJ. Climbing assays were conducted to assess vertical locomotion. Circadian locomotion was observed using Drosophila Activity Monitors. CS, but not Or-R, raised on RJ were larger compared to controls. Flies exposed to RJ exhibited entrainment and free-running rhythms. The increased size due to RJ exposure in this study had no bearing on circadian locomotor activity or climbing. These results indicate that there is variation among physiological responses to RJ among different strains, but RJ was equally ineffective in affecting locomotor behavior no matter the physiological response.  相似文献   

13.
Neuropeptides are ubiquitous in both mammals and invertebrates and play essential roles in regulation and modulation of many developmental and physiological processes through activation of G-protein-coupled-receptors (GPCRs). However, the mechanisms by which many of the neuropeptides regulate specific neural function and behaviors remain undefined. Here we investigate the functions of Drosulfakinin (DSK), the Drosophila homolog of vertebrate neuropeptide cholecystokinin (CCK), which is the most abundant neuropeptide in the central nervous system. We provide biochemical evidence that sulfated DSK-1 and DSK-2 activate the CCKLR-17D1 receptor in a cell culture assay. We further examine the role of DSK and CCKLR-17D1 in the regulation of larval locomotion, both in a semi-intact larval preparation and in intact larvae under intense light exposure. Our results suggest that DSK/CCKLR-17D1 signaling promote larval body wall muscle contraction and is necessary for mediating locomotor behavior in stress-induced escape response.  相似文献   

14.
Genetic manipulation of individual neurons provides a powerful approach toward understanding their contribution to stereotypic behaviors. We describe and evaluate a method for identifying candidate interneurons and associated neuropile compartments that mediate Drosophila larval locomotion. We created Drosophila larvae that express green fluorescent protein (GFP) and a shibire(ts1) (shi(ts1)) transgene (a temperature-sensitive neuronal silencer) in small numbers of randomly selected cholinergic neurons. These larvae were screened for aberrant behavior at an elevated temperature (31-32°C). Among larvae with abnormal locomotion or sensory-motor responses, some had very small numbers of GFP-labeled temperature-sensitive interneurons. Labeled ascending interneurons projecting from the abdominal ganglia to specific brain neuropile compartments emerged as candidates for mediation of larval locomotion. Random targeting of small sets of neurons for functional evaluation, together with anatomical mapping of their processes, provides a tool for identifying the regions of the central nervous system that are required for normal locomotion. We discuss the limitations and advantages of this approach to discovery of interneurons that regulate motor behavior.  相似文献   

15.
16.
Effects of cortisol on aggression and locomotor activity in rainbow trout   总被引:5,自引:0,他引:5  
Noninvasive administration of cortisol through the diet resulted in relatively rapid (<1.5 h) and highly reproducible increases in plasma cortisol in rainbow trout, comparable to changes seen in fish subjected to substantial stress. Juvenile rainbow trout were reared in isolation for 1 week, before their daily food ration was replaced by a meal of cortisol-treated food corresponding to 6 mg cortisol kg(-1). All fish were observed for 30 min, beginning at 1 or 48 h following the introduction of cortisol-treated food. Additional cortisol (75% of the original dose on Day 2, and 50% on Day 3) was administered to the long-term cortisol-treated group. The resulting blood plasma concentrations of cortisol were similar in short- and long-term treated fish, and corresponded to those previously seen in stressed rainbow trout. Controls were fed similar food without cortisol. Half of the fish from each treatment group (controls and short- and long-term cortisol) were subjected to an intruder test (a smaller conspecific introduced into the aquarium), while half of the fish were observed in isolation. In fish challenged by a conspecific intruder, short-term cortisol treatment stimulated locomotor activity, while long-term treatment inhibited locomotion. Aggressive behavior was also inhibited by long-term cortisol treatment, but not by short-term exposure to cortisol. Cortisol treatment had no effect on locomotor activity in undisturbed fish, indicating that the behavioral effects of cortisol were mediated through interaction with other signal systems activated during the simulated territorial intrusion test. This study demonstrates for the first time that cortisol has time- and context-dependent effects on behavior in teleost fish.  相似文献   

17.
We examined the relative importance of parental nutritional condition and larval food ration on the rates of development, growth and metamorphosis of larvae of Strongylocentrotus droebachiensis (Müller) in a laboratory experiment. Parents were reared for 22 months on either a high ration of kelp (Laminaria spp., 6 days week−1) supplemented with mussel flesh (Mytilus spp., 1 day week−1) (KM), or a low ration of kelp (1 day week−1) (KL). Larvae were fed either a high ration (5000 cells ml−1) or a low ration (500 cells ml−1) of microalgae (Dunaliella tertiolecta). Larval food ration had a strong effect on the rates of development, growth, and metamorphosis, which were all significantly greater in larvae fed the high ration. Test diameter of settlers also was significantly greater in the high than the low ration. Parental nutritional condition had little or no effect on the rates of development and growth, and no effect on settler size. The rate of metamorphosis was significantly higher in larvae from the KM than the KL treatment in the high but not the low ration (where rates of metamorphosis were similar). Although parental condition generally had a small effect on larval development, our results suggest that when planktonic food is abundant, larvae of adults from nutritionally rich habitats (such as kelp beds) may metamorphose sooner than those of adults from nutritionally poor habitats (such as barrens).  相似文献   

18.
We used four replicate outbred populations of Drosophila melanogaster to investigate whether the light regimes experienced during the pre-adult (larval and pupal) and early adult stages influence the free-running period (τDD) of the circadian locomotor activity rhythm of adult flies. In a series of two experiments four different populations of flies were raised from egg to eclosion in constant light (LL), in light/dark (LD) 12:12 h cycle, and in constant darkness (DD). In the first experiment the adult male and female flies were directly transferred into DD and their locomotor activity was monitored, while in the second experiment the locomotor activity of the emerging adult flies was first assayed in LD 12:12 h for 15 days and then in DD for another 15 days. The τDD of the locomotor activity rhythm of flies that were raised in all the three light regimes, LL, LD 12:12 h and in DD was significantly different from each other. The τDD of the locomotor activity rhythm of the flies, which were raised in DD during their pre-adult stages, was significantly shorter than that of flies that were raised as pre-adults in LL regime, which in turn was significantly shorter than that of flies raised in LD 12:12 h regime. This pattern was consistent across both the experiments. The results of our experiments serve to emphasise the fact that in order to draw meaningful inferences about circadian rhythm parameters in insects, adequate attention should be paid to control and specify the environment in which pre-adult rearing takes place. The pattern of pre-adult and early adult light regime effects that we see differs from that previously observed in studies of mutant strains of D. melanogaster, and therefore, also points to the potential importance of inter-strain differences in the response of circadian organisation to external influences.  相似文献   

19.
Mosquito borne diseases have remained a grave threat to human health and are posing a significant burden on health authorities around the globe. The understanding and insight of mosquito breeding habitats features is crucial for their effective management. Comprehensive larval surveys were carried out at 14 sites in Qatar. A total of 443 aquatic habitats were examined, among these 130 were found positive with Culex pipiens, Cx. quinquefasciatus, Cx. mattinglyi, Ochlerotatus dorsalis, Oc. caspius and Anopheles stephensi. The majority of positive breeding habitats were recorded in urban areas (67.6%), followed by livestock (13.8%), and least were in agriculture (10.7%). An. stephensi larvae were positively correlated with Cx. pipien, Cx. quinquefasciatus, and negatively with water salinity. Large and shaded habitats were the most preferred by An. stephensi. In addition, Cx. pipiens was positively associated with the turbidity and pH, and was negatively associated with vegetation and habitat size. A negative association of Cx. quinquefasciatus with dissolved oxygen, water temperature, and salinity, while positive with habitat surface area was observed. Oc. dorsalis was negatively correlated with pH, water temperature, depth, and habitat surface area, whereas salinity water was more preferable site for females to lay their eggs. These results demonstrate that environmental factors play a significant role in preference of both anopheline and culicine for oviposition, while their effective management must be developed as the most viable tool to minimize mosquito borne diseases.  相似文献   

20.
Summary The late larvae of Drosophila gibberosa Patterson and Mainland choose different pupariation sites than the larvae of Drosophila melanogaster Meigen. Since the larvae of D. gibberosa do not attach themselves to the substratum, the salivary glands contain only a small amount of the glue proteins before pupariation. Proteins comprising the salivary gland secretions of late larvae of these two species were compared and found to be qualitatively quite different. Only five polypeptides with the same molecular masses were identified in both species. The rate of protein synthesis in the salivary glands of D. gibberosa continued to increase through the late larval stage and pupariation. As a consequence, the total amount of protein contained in the salivary glands also continued to increase after pupariation. To demonstrate temporal changes in protein synthesis from 48 h before pupariation to 28 h after pupariation, newly synthesized polypeptides were pulse labeled by culturing salivary glands in vitro. The patterns of polypeptide synthesis fell into four major groups depending upon whether the synthesis of a protein stopped shortly after pupariation, stopped during late pupariation, increased at pupariation, or was initiated after pupariation. Changing patterns of protein synthesis are correlated with the known changes in gene puffing during this developmental period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号