首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of 2,4-diphenyl-6-aryl pyridines containing hydroxyl group(s) at the ortho, meta, or para position of the phenyl ring were synthesized, and evaluated for topoisomerase I and II inhibitory activity and cytotoxicity against several human cancer cell lines for the development of novel anticancer agents. Structure–activity relationship study revealed that the substitution of hydroxyl group(s) increased topoisomerase I and II inhibitory activity in the order of meta > para > ortho position. Substitution of hydroxyl group on the para position showed better cytotoxicity.  相似文献   

2.
As part of our effort to develop potential topoisomerase IIα (topo IIα) targeting anticancer agents, we systematically designed a new series of hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno[4,3-b]pyridines. Total eighteen compounds were synthesized and tested for their ability to inhibit the function of topo I and IIα, and proliferation of human breast (T47D), colorectal (HCT15), and cervix (HeLa) cancer cells. Except compound 11, all of the tested compounds displayed selective topo IIα inhibitory activity. Compounds 818, 22, 24, and 25 showed excellent topo IIα inhibitory activity than a positive control, etoposide. Most of the compounds appeared to be superior to reference compounds in their antiproliferative activity. Structure-activity relationship (SAR) study has shown that it is better to place the hydroxyphenyl group at the 4-position of the central pyridine for superior topo IIα inhibition and antiproliferative activity. Similarly, the 3′-, or 4′-hydroxyphenyl substitution at the 2- and 4-positon of pyridine ring is important for better activity than 2′-substitution.  相似文献   

3.
4.
Novel series of disulfide and sulfone hybrid analogs (1 2 0) were synthesized and characterized through EI-MS and 1H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20–88.16 μM as compared to standard d-saccharic acid 1,4 lactone (48.4 ± 1.25 μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies.  相似文献   

5.
In our lead finding program, a series of 5-thioxo-[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-ones and their 5-thio-alkyl derivatives were designed and synthesized which contained different substituents at ortho-position of 2-phenyl ring attached to the fused ring structure. The preliminary pharmacological evaluation demonstrated that the synthesized compounds exhibited a varying degree of inhibitory activity towards thymidine phosphorylase (TP), comparable to reference compound, 7-Deazaxanthine (7-DX, 2) (IC50 value = 42.63 μM). The study also inferred that the ortho-substituted group at the phenyl ring and 5-thio-alkyl moiety imparted steric hindrance effects in the binding site of the enzyme, leading to a reduced inhibitory response. In addition, compound 3a was identified as a mixed-type inhibitor of TP. Moreover, computational docking study was performed to illustrate the important structural information on the plausible ligand-enzyme binding interactions.  相似文献   

6.
A series of benzoxazinones 128 were synthesized via reaction of anthranilic acid with various substituted benzoyl chlorides in the presence of triethylamine in chloroform. Compounds 118 showed a good inhibition of α-chymotrypsin with IC50 ± SEM values between 6.5 and 341.1 μM. Preliminary structure-activity relationships studies indicated that the presence of substituents on benzene ring reduces the inhibitory potential of benzoxazinone. Also the increased inhibitory potential due to fluoro group at phenyl substituent was observed followed by chloro and bromo substituents. Compounds with strong electron donating or withdrawing groups on phenyl substituent, showed a good inhibitory potential at ortho > meta > para position. Kinetics studies showed diverse types of inhibition, except uncompetitive-type inhibition. The Ki values ranged between 4.7 and 341.2 μM. Interestingly, most of these compounds were non-cytotoxic to 3T3 cell line at 30 μM, except compounds 6, 14 and 15. Competitive inhibitors of chymotrypsin are like to inhibit other α-chymotrypsin-like serine proteases due to structural and functional similarities between them. The inhibitors identified during the current study deserve to be further studied for their therapeutic potential against abnormalities mediated by chymotrypsin or other serine protease.  相似文献   

7.
Based on the importance of the previous fluorinated and/or hydroxylated chalcones studies, thirty-six compounds were designed as phenyl or hydroxyphenyl bearing fluoro, trifluoromethyl or trifluoromethoxy phenyl propenones and synthesized by applying modified Claisen-Schmidt condensation reaction as a single step. Inhibitory effects of the synthesized compounds on ROS production stimulated by LPS in RAW 264.7 macrophage were evaluated. Structure-activity relationship (SAR) study revealed that the compounds possessing para-hydroxyphenyl group combined with meta-fluoro or meta-trifluoromethyl phenyl group, and meta/para-hydroxyphenyl group combined with ortho-trifluoromethoxyphenyl group have an essential role in inhibiting the LPS-stimulated ROS production in RAW 264.7 macrophages. The most significant inhibitory effect on LPS-stimulated ROS production in RAW 264.7 macrophages was observed in compound 30 that possessed para-hydroxyphenyl group along with ortho-trifluoromethoxyphenyl group.  相似文献   

8.
A series of thiourea derivatives were synthesized and their antiviral activity was evaluated in a cell-based HCV subgenomic replicon assay. SAR studies revealed that the chain length and the position of the alkyl linker largely influenced the in vitro anti-HCV activity of this class of potent antiviral agents. Among this series of compounds synthesized, the thiourea derivative with a six-carbon alkyl linker at the meta-position of the central phenyl ring (10) was identified as the most potent anti-HCV inhibitor (EC50 = 0.047 μM) with a selectivity index of 596.  相似文献   

9.
A new aryl-hydrazide l-glutamic acid derivative, pygmeine (3), was isolated from a methanolic extract of Lichina pygmaea, a marine lichen. Synthetic derivatives obtained via a two-step coupling of l-glutamic acid with phenylhydrazine moieties were useful to elucidate the structure of 3 and to carry out biological assays. Thus, the cytotoxicity of the ortho-, meta-, and para-hydroxyl isomers along with their respective benzyl intermediates, and a natural methoxylated analog, were evaluated on murine and human melanoma cells (B16, A375). The para-hydroxyl isomer 6 was found to be the most active (IC50 = 1.6 μM) on B16 cells.  相似文献   

10.
The present report describes the synthesis and antiproliferative evaluation of certain indolo[3,2-c]quinoline derivatives. For the C6 anilino-substituted derivatives, (11H-indolo[3,2-c]quinolin-6-yl)phenylamine (6a) was inactive. Structural optimization of 6a by the introduction of a hydroxyl group at the anilino-moiety resulted in the enhancement of antiproliferative activity in which the activity decreased in an order of para-OH, 7a > meta-OH, 8a > ortho-OH, 9a. For the C6 alkylamino-substituted derivatives, 11a, 12a, 13a, 14a, and 15a exhibited comparable antiproliferative activities against all cancer cells tested and the skin Detroit 551 normal fibroblast cells. Three cancer cells, HeLa, A549, and SKHep, are very susceptible with IC50 of less than 2.17 μM while PC-3 is relatively resistant to this group of indolo[3,2-c]quinolines. For the 2-phenylethylamino derivatives, compound 20a is active against the growth of HeLa with an IC50 of 0.52 μM, but is less effective against the growth of Detroit 551 with an IC50 of 19.32 μM. For the bis-indolo[3,2-c]quinolines, N,N-bis-[3-(11H-indolo[3,2-c]quinolin-6-yl)aminopropyl]amine hydrochloride (25) is more active than its N-methyl derivative 26 and the positive Doxorubicin. Mechanism studies indicated 25 can induce caspase-3 activation, γ-H2AX phosphorylation, cleavage of poly(ADP-ribose)polymerase and DNA fragmentation. These results provide evidence that DNA, topo I, and topo II are the primary targets of indolo[3,2-c]quinoline derivatives and that consequently inhibits proliferation and causes apoptosis in cancer cells.  相似文献   

11.
Protein tyrosine phosphatase 1B (PTP1B) is a key factor in the negative regulation of insulin pathway and a promising target for treatment of diabetes and obesity. Herein, the sapogenin 2b, prepared from the natural triterpene saponin 1b, was modified at 3-position to establish the dammarane derivatives library via esterification, oxidation and reductive amination reaction and evaluated as PTP1B inhibitors. 3-O-para-Carboxylphenyl substituted derivative 5b was found with the best in vitro inhibition activity to protein tyrosine phosphatase 1B (IC50 = 0.27 μM), where 3-O-meta-carboxylphenyl substituted 5a exhibited the best selectivity (nearly fivefolds) between PTP1B and T-cell protein tyrosine phosphatase.  相似文献   

12.
With the aim to find out the structural features for the MAO inhibitory activity and selectivity, in the present communication we report the synthesis and pharmacological evaluation of a new series of bromo-6-methyl-3-phenylcoumarin derivatives (with bromo atom in both different benzene rings of the skeleton) with and without different number of methoxy substituent at the 3-phenyl ring. The methoxy substituents were introduced, in this new scaffold, in the meta and/or para positions of the 3-phenyl ring. The synthesized compounds 37 were evaluated as MAO-A and B inhibitors using R-(?)-deprenyl (selegiline) and iproniazide as reference inhibitors, showing, most of them, MAO-B inhibitory activities in the low nanomolar range. Compounds 4 (IC50 = 11.05 nM), 5 (IC50 = 3.23 nM) and 6 (IC50 = 7.12 nM) show higher activity than selegiline (IC50 = 19.60 nM) and higher MAO-B selectivity, with more than 9050-fold, 30,960-fold and 14,045-fold inhibition levels, with respect to the MAO-A isoform.  相似文献   

13.
A series of 1,4- and 1,5-diaryl substituted 1,2,3-triazoles was synthesized by either Cu(I)-catalyzed or Ru(II)-catalyzed 1,3-dipolar cycloaddition reactions between 1-azido-4-methane-sulfonylbenzene 9 and a panel of various para-substituted phenyl acetylenes (4-H, 4-Me, 4-OMe, 4-NMe2, 4-Cl, 4-F). All compounds were used in in vitro cyclooxygenase (COX) assays to determine the combined electronic and steric effects upon COX-1 and COX-2 inhibitory potency and selectivity. Structure-activity relationship studies showed that compounds having a vicinal diaryl substitution pattern showed more potent COX-2 inhibition (IC50 = 0.03–0.36 μM) compared to their corresponding 1,3-diaryl-substituted counterparts (IC50 = 0.15 to >10.0 μM). In both series, compounds possessing an electron-withdrawing group (Cl and F) at the para-position of one of the aryl rings displayed higher COX-2 inhibition potency and selectivity as determined for compounds containing electron-donating groups (Me, OMe, NMe2). The obtained data show, that the central carbocyclic or heterocyclic ring system as found in many COX-2 inhibitors can be replaced by a central 1,2,3-triazole unit without losing COX-2 inhibition potency and selectivity. The high COX-2 inhibition potency of some 1,2,3-triazoles having a vicinal diaryl substitution pattern along with their ease in synthesis through versatile Ru(II)-catalyzed click chemistry make this class of compounds interesting candidates for further design and synthesis of highly selective and potent COX-2 inhibitors.  相似文献   

14.
In an effort to develop potent anti-cancer chemopreventive agents that act on topoisomerase II, a novel series of bisindolylalkanes analogues such as 3,3′-(thiochroman-4,4-diyl)bis(1H-indole) are synthesized. Structures of all compounds are elucidated by 1H NMR, 13C NMR and HRMS. Anti-proliferative activities for all of these compounds are investigated by the method of MTT assay on 7 human cancer lines. Most of them showed antitumor activities in vitro, the half maximal inhibitory concentration (IC50) value is 7.798 μg/mL of 3a against MCF7. Compound 3a showed comparable topoisomerase II inhibitory activity to etoposide (VP-16) at 100 μM concentration. The rest of the compounds also showed varying degree topoisomerase II inhibitory activity.  相似文献   

15.
A series of C4-N-substituted podophyllum derivatives were synthesized and tested for cytotoxicity in HeLa, BGC-823, A549, Huh7 and MCF-7 cells by MTT assay. Pharmacologically, most derivatives displayed potent cytotoxicity against at least one of the tested tumor cell lines. Structure activity relationship (SAR) analysis suggests that compounds with imidogen exposed on the pyridine, rather than pyrimidine, exhibited significantly elevated potency. Moreover, the presence of a chlorine atom in the heterocyclic ring enhanced cytotoxicity, with the order 3-position > 4-position > 5-position > 6-position. Specifically, two compounds, 3g and 3h, with 2-amino-3-chloropyridine substituted into the podophyllotoxin (PPT) and 4′-O-demethylepipodophyllotoxin (DMEP) scaffolds were shown to have the most potent HeLa cells cytotoxicity compared to other synthesized derivatives or reference compounds PPT, DMEP and etoposide (VP-16). The compound 3g was shown to inhibit microtubule polymerization and compound 3h affected topoisomerase II catalytic activity. Both compounds resulted in G2/M phase arrest and apoptosis, purportedly by increasing the expression of P53, followed by Bax up-regulation, Bcl-2 down-regulation, and caspase-3 activation. As a result of this work, we conclude that compounds 3g and 3h are more potent anticancer agents than VP-16, and that they work by different antitumor mechanisms.  相似文献   

16.
A series of novel biphenyl urea derivates were synthesized and investigated for their potential to inhibit vascular endothelial growth factor receptor-2 (VEGFR-2). In particular, A7, B3 and B4 displayed significant enzymatic inhibitory activities, with IC50 values of 4.06, 4.55 and 5.26 nM. Compound A7 exhibited potent antiproliferative activity on several cell lines. SAR study suggested that the introduction of methyl at ortho-position of the biphenyl urea and tertiary amine moiety could improve VEGFR-2 inhibitory activity and antitumor effects. Molecular docking indicated that the urea moiety formed four hydrogen bonds with DFG residue. These biphenyl ureas could serve as promising lead compounds for further optimization.  相似文献   

17.
Human DNA topoisomerases have become attractive targets for developing more effective anticancer drugs. In this study, a series of new benzofuro[3,2-b]pyridin-7-ols were designed and synthesized for the first time and screened for their topoisomerase I and II inhibitory and antiproliferative activity. Structure-activity relationships revealed the position of ortho- and para-hydroxyl group at 2-phenyl ring, and meta-hydroxyl group at 4-phenyl ring of benzofuro[3,2-b]pyridin-7-ol are important for potent and selective topo II inhibitory activity. Compound 11 showed the most selective and potent topo II inhibition (100% inhibition at 100?µM) and strongest antiproliferative activity (IC50?=?0.86?µM) than all the positive controls in HeLa cell line.  相似文献   

18.
In view of reported xanthine oxidase inhibitory potential of naphthopyrans and flavones, naphthoflavones as hybrids of the two were designed, synthesized and evaluated for in vitro xanthine oxidase inhibitory activity in the present study. The results of the assay revealed that the naphthoflavones possess promising inhibitory potential against the enzyme with IC50 values ranging from 0.62 to 41.2 μM. Structure activity relationship indicated that the nature and placement of substituents on the phenyl ring at 2nd position remarkably influences the inhibitory activity. Substitution of halo and nitro groups at ortho and para position of the phenyl ring (2nd position) remarkably favored the activity. NF-4 with p-fluoro phenyl ring was the most potent inhibitor with IC50 value of 0.62 μM. Enzyme kinetics study was also performed to investigate the inhibition mechanism and it was found that the naphthoflavones displayed mixed type inhibition. The basis of significant inhibition of xanthine oxidase by NF-4 was rationalized by molecular modeling studies.  相似文献   

19.
A new and efficient solvent free synthesis of 2,4,5-trisubstituted imidazoles (3a3j) was achieved by N-acetyl glycine (NAG) catalyzed three components condensation of aldehydes, benzil and ammonium acetate. Our synthetic methodology accommodated a range of various substituted alkyl and aryl aldehydes. Evaluation of α-glucosidase inhibitory activity of these imidazole derivatives revealed that most of them presented good α-glucosidase inhibition at low micro-molar concentrations. Among the synthesized compounds, compound 3c, bearing the ortho-hydroxy phenyl substituent at position 2 displayed the highest inhibitory activity with an IC50 value 74.32 ± 0.59 μM. In silico molecular docking for all compounds and computational studies of the most active compound 3c were also performed.  相似文献   

20.
The critical role of nuclear topoisomerase enzymes during cell proliferation process guided topoisomerases to be one of the major targets for anticancer drug development. We have designed and synthesized 22 heteroaromatic ring incorporated chalcone derivatives substituted with epoxide or thioepoxide. Topoisomerase enzyme inhibitory activity and cytotoxic tests were also conducted to evaluate compounds’ pharmacological efficacy. In the topoisomerase I inhibitory test, compound 1 was most active one, 24% of inhibition at 20 μM, among all the compounds but it was lower than camptothecin. Compounds 9, 11, and 13 inhibited the function of topoisomerase II more strongly than etoposide with almost same magnitude (around 90% and 30% inhibition at 100 and 20 μM, respectively) which were higher than those of etoposide (72% and 18% inhibition). In the cytotoxicity test, compound 9 inhibited T47D cancer cell growth with the IC50 value of 6.61 ± 0.21 μM. On the other hand, compound 13 (IC50: 4.32 ± 0.18 μM) effectively suppressed MDA-MB468 cancer cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号