首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of gonadal steroids in modulating male sexual behavior is well established. Individual differences in male sexual behavior, independent of gonadal steroids, are prevalent across a wide range of species, including man. However, the genetic mechanisms underlying steroid-independent male sexual behavior are poorly understood. A high proportion of B6D2F1 hybrid male mice demonstrates steroid-independent male sexual behavior (identified as “maters”), providing a mouse model that opens up avenues of investigation into the mechanisms regulating male sexual behavior in the absence of gonadal hormones. Recent studies have revealed several proteins that play a significant factor in regulating steroid-independent male sexual behavior in B6D2F1 male mice, including amyloid precursor protein (APP), tau, and synaptophysin. The specific goals of our study were to determine whether steroid-independent male sexual behavior was a heritable trait by determining if it was dependent upon the behavioral phenotype of the B6D2F1 sire, and whether the differential expression of APP, tau, and synaptophysin in the medial preoptic area found in the B6D2F1 sires that did and did not mate after gonadectomy was similar to those found in their male offspring. After adult B6D2F1 male mice were bred with C57BL/6J female mice, they and their male offspring (BXB1) were orchidectomized and identified as either maters or “non-maters”. A significant proportion of the BXB1 maters was sired only from B6D2F1 maters, indicating that the steroid-independent male sexual behavior behavioral phenotype of the B6D2F1 hybrid males, when crossed with C57BL/6J female mice, is inherited by their male offspring. Additionally, APP, tau, and synaptophysin were elevated in in the medial preoptic area in both the B6D2F1 and BXB1 maters relative to the B6D2F1 and BXB1 non-maters, respectively, suggesting a potential genetic mechanism for the inheritance of steroid-independent male sexual behavior.  相似文献   

2.
Male reproductive behavior is highly dependent upon gonadal steroids. However, between individuals and across species, the role of gonadal steroids in male reproductive behavior is highly variable. In male B6D2F1 hybrid mice, a large proportion (about 30%) of animals demonstrate the persistence of the ejaculatory reflex long after castration. This provides a model to investigate the basis of gonadal steroid-independent male sexual behavior. Here we assessed whether non-gonadal steroids promote mating behavior in castrated mice. Castrated B6D2F1 hybrids that persisted in copulating (persistent copulators) were treated with the androgen receptor blocker, flutamide, and the aromatase enzyme inhibitor, letrozole, for 8 weeks. Other animals were treated with the estrogen receptor blocker, ICI 182,780, via continual intraventricular infusion for 2 weeks. None of these treatments eliminated persistent copulation. A motivational aspect of male sexual behavior, the preference for a receptive female over another male, was also assessed. This preference persisted after long-term castration in persistent copulators, and administration of ICI 182,780 did not influence partner preference. To assess the possibility of elevated sensitivity to sex steroids in brains of persistent copulators, we measured mRNA levels for genes that code for the estrogen receptor-α, androgen receptor, and aromatase enzyme in the medial preoptic area and bed nucleus of the stria terminalis. No differences in mRNA of these genes were noted in brains of persistent versus non-persistent copulators. Taken together our results suggest that non-gonadal androgens and estrogens do not maintain copulatory behavior in B6D2F1 mice which display copulatory behavior after castration.  相似文献   

3.
Male sexual behavior (MSB) is modulated by gonadal steroids, yet this relationship is highly variable across species and between individuals. A significant percentage (∼30%) of B6D2F1 hybrid male mice demonstrate MSB after long-term orchidectomy (herein after referred to as “maters”), providing an opportunity to examine the mechanisms that underlie individual differences in steroidal regulation of MSB. Use of gene expression arrays comparing maters and non-maters has provided a first pass look at the genetic underpinnings of steroid-independent MSB. Surprisingly, of the ∼500 genes in the medial preoptic area (MPOA) that differed between maters and non-maters, no steroid hormone or receptor genes were differentially expressed between the two groups. Interestingly, best known for their association with Alzheimer’s disease, amyloid precursor protein (APP) and the microtubule-associated protein tau (MAPT) were elevated in maters. Increased levels of their protein products (APP and tau) in their non-pathological states have been implicated in cell survival, neuroprotection, and supporting synaptic integrity. Here we tested transgenic mice that overexpress tau and found facilitated mounting and intromission behavior after long-term orchidectomy relative to littermate controls. In addition, levels of synaptophysin and spinophilin, proteins generally enriched in synapses and dendritic spines respectively, were elevated in the MPOA of maters. Dendritic morphology was also assessed in Golgi-impregnated brains of orchidectomized B6D2F1 males, and hybrid maters exhibited greater dendritic spine density in MPOA neurons. In sum, we show for the first time that retention of MSB in the absence of steroids is correlated with morphological differences in neurons.  相似文献   

4.
Gonadal steroids are essential for the long-term maintenance of the full repertoire of sexual behavior in male rodents. Typically, all individuals of several species cease to display the ejaculatory reflex within a few weeks of castration. The present study documents the persistence of the ejaculatory reflex 19 weeks after orchidectomy in 40% of male Siberian hamsters maintained in long or short day lengths; testosterone was undetectable in the circulation of these animals. Intact hamsters transferred from a long to a short photoperiod underwent gonadal regression: 50% of these animals continued to display mating behavior culminating in ejaculation throughout 25 weeks of testing. The remaining animals failed to ejaculate after approximately 11 weeks of short day treatment but resumed mating coincident with spontaneous gonadal recrudescence. Activation of sex behavior in the latter cohort appears to depend on gonadal steroids and is in contrast to the copulatory behavior of the substantial proportion of the study population that sustains the full sexual repertoire in the long-term absence of gonadal steroids. Sex behavior of the latter animals may be dependent on nongonadal steroids or mediation by steroid-independent mechanisms.  相似文献   

5.
Yohimbine and apomorphine selectively act on noradrenergic and dopaminergic neural substrates to augment male sexual behavior (MSB) in several rodent species. The present study assessed whether these drugs can overcome the suppressive effects of short winter-like day lengths on MSB. Yohimbine treatments that markedly increase copulatory behavior of male hamsters in long days were completely ineffective in facilitating MSB when injected after gonadal regression induced by 16 wks of short day lengths and after complete gonadal recrudescence after 32 wks of short days; apomorphine was similarly ineffective. The brain circuit that mediates MSB either may be less responsive to yohimbine and apomorphine in short than long days, or these drugs may not produce equivalent neurotransmitter changes in the two day lengths. After 32 wks of short-day treatment, all males had undergone testicular recrudescence and successfully ejaculated on initial tests with sexually receptive females after a hiatus of at least 4 mo during which they were denied mating opportunities. This suggests that overwintering males in the field are in a state of reproductive readiness at the outset of spring conditions favorable for survival of offspring.  相似文献   

6.
Steps were taken to eradicate endemic mouse coronavirus from a colony that was part of a behavioral project characterizing the genetics of alcohol sensitivity. This behavioral study was conducted to determine whether changing the uterine or rearing environment (as is integral to common rederivation methods) would have a significant effect on the expression of the behavioral traits in question. Selected breeding pairs of the affected lines were divided into four treatment groups: 1) transfer of embryos to pseudopregnant B6D2F1 female mice, 2) fostering offspring to B6D2F1 dams, 3) fostering offspring to a different dam of the same line, and 4) offspring raised by the birth dam. Embryo transfers were successful only in one affected line. At approximately 50 days of age, the offspring were tested for locomotor behavior after intraperitoneal administration of ethanol or normal saline. There were no statistically significant effects of embryo transfer on the ethanol phenotype (ethanol-induced locomotor depression). Fostering significantly reduced the stimulant response to ethanol of only one mouse line selectively bred for high sensitivity to ethanol-induced stimulation, although the stimulant response of the fostered groups was still quite robust. Overall, the results of this study showed that eradication efforts involving fostering of offspring have a modest impact on the stimulant response to ethanol, but there were insufficient data to draw conclusions regarding the use of embryo transfer.  相似文献   

7.
Blue mussels of the genus Mytilus form extensive hybrid zones in the North Atlantic and elsewhere where the distributions of different species overlap. Mytilus species transmit both maternal and paternal mtDNA through egg and sperm, respectively, a process known as doubly uniparental inheritance (DUI), and some females produce offspring with extremely biased sex ratios. These two traits have been shown to be linked and maternally controlled, with sex determination involving nuclear–cytoplasmic interactions. Hybridization has been shown to disrupt DUI mitochondrial inheritance and sex ratio bias; however, the effect of hybridization on reproductive fitness has not previously been examined. We investigated this effect in M. edulis × M. trossulus crosses through histological examination of mature F1 progeny, and spawning of F1 hybrids to monitor survival of their progeny through to the D stage of larval development. For progeny produced from mothers with a strong bias toward female offspring (often 100%) in pure-bred crosses, there was a clear breakdown in female dominance of progeny and significantly more hermaphrodites in the hybrid crosses produced from sperm with the M-tr1 mitotype. We also found significant sex-specific differences among hybrid progeny, with females producing normal eggs while males and hermaphrodites evidenced impaired gonadal development with significantly greater numbers of Sertoli cells, phagocytic hemocytes, and degenerating germ cells, all associated with gonad resorption. Males from crosses where DUI was disrupted and where male progeny were homoplasmic for the female mtDNA were the most severely compromised. Allelic incongruity between maternal and paternal mitotypes in hybrid crosses was associated with significant disruption of male gonadal development.  相似文献   

8.
The most common post-zygotic isolation mechanism between populations of the phytophagous mite Tetranychus urticae is 'hybrid breakdown', i.e. when individuals from two different populations are crossed, F1 hybrid females are produced, but F2 recombinant male offspring suffer increased mortality. Two-spotted spider mites collected from two populations, one on rose and the other on cucumber plants, were infected with Wolbachia bacteria. These bacteria may induce cytoplasmic incompatibility in their hosts: uninfected (U) females become reproductively incompatible with infected (W) males. We report on the effect of Wolbachia infections in intra- and interstrain crosses on (i) F1 mortality and sex ratios (a test for cytoplasmic incompatibility), and (ii) the number of haploid offspring and mortality in clutches of F1 virgins (a test for hybrid breakdown). U x W crosses within the rose strain exhibited partial cvtoplasmic incompatibility. More interestingly, F2 males suffered increased mortality, a result identical to the hybrid breakdown phenomenon. The experiments were repeated using females from the cucumber strain. In interstrain U x W and U x U crosses, hybrid breakdown was much stronger in the former (80 versus 26%). This is the first report of a Wolbachia infection causing a hybrid breakdown phenotype. Our results show that Wolbhachia infections can contribute to reproductive incompatibility between populations of T. urticae.  相似文献   

9.
Hybrid resistance, which is observed in certain strain combinations when parent-strain bone marrow cells are grafted into lethally irradiated F1 hybrids, can be specifically overcome by the i.v. injection, 1 wk before the graft, of spleen cells syngeneic with the bone marrow graft. This phenomenon is due to a suppressor mechanism, induced in the spleen of the F1 hybrid by the injection of parent-strain spleen cells and mediated by a nylon-adherent Thy-1+Lyt-1+2- cell population of hybrid origin, because hybrid resistance can be inhibited by the transfer into a normal B6D2F1 of nylon-adherent Thy-1+Lyt-1+2- spleen cells from B6D2F1 mice pretreated with B6 spleen cells 1 wk earlier (B6-pretreated B6D2F1); spleen cells from B6-pretreated B6D2F1 mice not depleted of their nylon-adherent subpopulation cannot restore hybrid resistance when they are injected into a B6D2F1 rendered nonresistant by split-dose irradiation; and spleen cells from normal B6D2F1 mice cannot restore hybrid resistance when they are injected into B6-pretreated B6D2F1 hybrids. The suppressor cells specifically inhibit resistance against bone marrow cells syngeneic with the spleen cells used for pretreatment, because transfer of nylon-adherent B6-pretreated B6D2F1 spleen cells into a normal B6D2F1 does not enhance syngeneic B6D2F1 or parent-strain D2 bone marrow growth, and when injected into normal B6D2F1 hybrids, nylon-adherent spleen cells from B6D2F1 mice pretreated with D2 spleen cells 1 wk earlier (D2-pretreated B6D2F1) are not able to transfer the inhibition of hybrid resistance against B6 bone marrow cells. Moreover, the activity of the suppressor cells depends on the genetic environment of the hybrid host mice, because nylon-adherent B6-pretreated B6D2F1 spleen cells injected into normal B6C3F1 hybrids do not transfer an inhibition of hybrid resistance, and when injected into B6C3F1 hosts previously rendered nonresistant by split-dose irradiation, spleen cells from B6-pretreated B6D2F1 mice can, in contrast, transfer hybrid resistance.  相似文献   

10.
Melanoma occurring spontaneously in Xiphophorus fish hybrids is a model system in which involvement of cellular oncogenes and multi-step regulation of their expression have been identified by classical genetics. The macromelanophore gene in platyfish (Xiphophorus maculatus) is a sex-linked codominant gene which determines the black spot patterns of macromelanophores in the skin. The macromelanophore locus includes a cellular oncogene which potentially induces neoplasms of the pigment cells. Expression of the oncogene is regulated by a multi-step genetic process and brings about a characteristic phenotype associated with pigment cell differentiation at each step. The multi-step genetic regulation of oncogene expression can be recognized by interspecific hybridization of the platyfish with swordtails (Xiphophorus helleri) which have not developed the macromelanophore gene. When platyfish are hybridized with swordtails, the F1 offspring carrying this gene develop a preneoplastic state. When the F1 offspring are back-crossed to swordtails, the backcross offspring develop a heritable form of melanoma with a characteristic inheritance pattern. This heritable form of melanoma occurs at an early age and has a well differentiated character. Thus, the first and second steps of oncogene expression bring about a preneoplastic state in the F1 offspring and a heritable form of melanoma in the backcross offspring, respectively. These steps may be due to progressive substitution of platyfish chromosomes with swordtail chromosomes in germ line cells, resulting in a progressive reduction of the dosage of regulatory genes in the platyfish genome. The third step of oncogene expression brings about a sporadic form of melanoma in the hybrid offspring bearing the preneoplastic state and heritable form of melanoma spontaneously or through induction by carcinogens. This form of melanoma has a poorly differentiated character. The incidence of this form is considerably enhanced by aging in adult life, thus exhibiting age-specific incidence. It is likely that this step is due to mutational events in regulatory genes, which occur in somatic cells following chromosome substitution in germ line cells by hybridization. The albino gene enhances the malignancy of the two forms of melanoma and the incidence of the sporadic form of melanoma, possibly by suppressing the differentiation of transformed pigment cells. These facts and speculations are summarized in Fig. 6. The molecular identification of oncogenes in this melanoma system and their transfer into the swordtail eggs may provide a useful means for studying oncogene expression during development, growth, and aging of animals.  相似文献   

11.
Social stressors such as depressed maternal care and family conflict are robust challenges which can have long-term physiological and behavioral effects on offspring and future generations. The current study investigates the transgenerational effects of an ethologically relevant chronic social stress on the behavior and endocrinology of juvenile and adult rats. Exposure to chronic social stress during lactation impairs maternal care in F0 lactating dams and the maternal care of the F1 offspring of those stressed F0 dams. The overall hypothesis was that the male and female F2 offspring of stressed F1 dams would display decreased social behavior as both juveniles and adults and that these behavioral effects would be accompanied by changes in plasma corticosterone, prolactin, and oxytocin. Both the female and male F2 offspring of dams exposed to chronic social stress displayed decreased social behavior as juveniles and adults, and these behavioral effects were accompanied by decreases in basal concentrations of corticosterone in both sexes, as well as elevated juvenile oxytocin and decreased adult prolactin in the female offspring. The data support the conclusion that social stress has transgenerational effects on the social behavior of the female and male offspring which are mediated by changes in the hypothalamic–pituitary–adrenal axis and hypothalamic–pituitary–gonadal axis. Social stress models are valuable resources in the study of the transgenerational effects of stress on the behavioral endocrinology of disorders such as depression, anxiety, autism, and other disorders involving disrupted social behavior.  相似文献   

12.
Transgenic mice in which the tetracycline transactivator (tTA) is driven by the forebrain-specific calcium–calmodulin-dependent kinase IIα promoter (CaMKIIα-tTA mice) are used to study the molecular genetics of many behaviors. These mice can be crossed with other transgenic mice carrying a transgene of interest coupled to the tetracycline-responsive promoter element to produce mice with forebrain-specific expression of the transgene under investigation. The value of using CaMKIIα-tTA mice to study behavior, however, is dependent on the CaMKIIα-tTA mice themselves lacking a behavioral phenotype with respect to the behaviors being studied. Here we present data that suggest CaMKIIα-tTA mice have a behavioral phenotype distinct from that of their wild-type (WT) littermates. Most strikingly, we find that CaMKIIα-tTA mice, both those with a C57BL/6NTac genetic background (B6-tTA) and those with a 129S6B6F1/Tac hybrid genetic background (F1-tTA), exhibit decreased locomotor activity compared with WT littermates that could be misinterpreted as altered anxiety-like behavior. Despite this impairment, neither B6-tTA nor F1-tTA mice perform differently than their WT littermates in two commonly used learning and memory paradigms – Pavlovian fear conditioning and Morris water maze. Additionally, we find data regarding motor coordination and balance to be mixed: B6-tTA mice, but not F1-tTA mice, exhibit impaired performance on the accelerating rotarod and both perform as well as their WT littermates on the balance beam.  相似文献   

13.
The B10.M mouse strain represents a model for male subfertility as it produces a significantly low number of offspring. The only known male reproductive phenotype of this strain is its high frequency of sperm-head morphological abnormalities (44.7 ± 2.4 %). We previously reported that this phenotype was the product of two recessive loci. In this study we mapped the loci causing the high frequency of sperm-head morphological abnormalities in this strain using F2 animals produced by crossing B10.M and C3H mice. Quantitative trait loci (QTL) analysis (n = 178) identified two recessive genes, one on Chromosome (Chr) 1 (LOD score = 30.585) and one on Chr 4 (LOD score = 4.532). Further analysis (n = 854) mapped the locus on Chr 1 between Ercc5 (23.55 cM) and D1Mit528 (25.95 cM) and the locus on Chr 4 between D4Mit148 (69.48 cM) and D4Mit170 (70.47 cM). It was also found that the effects of these two loci were not independent. The major locus on Chr 1 determines the expression of sperm-head abnormalities, while the locus on Chr 4 enhances the frequency of abnormalities only when the genotype of the Chr 1 locus is homozygous for the B10.M allele. The major locus on Chr 1 was named sperm-head morphology 1 (Shm1), while the modifier locus on Chr 4 was named sperm-head morphology 2 (Shm2).  相似文献   

14.
There is mounting evidence consistent with a general role of positive selection acting on the Drosophila melanogaster X-chromosome. However, this positive selection need not necessarily arise from forces that are adaptive to the organism. Nonadaptive meiotic drive may exist on the X-chromosome and contribute to forces of selection. Females from a reference D. melanogaster line, containing the X-linked marker white, were crossed to males from 49 isofemale lines established from seven African and five non-African natural populations to detect naturally occurring meiotic drive. Several lines exhibited a departure from expected Mendelian transmission of X-chromosomes to the third generation (F2) offspring, particularly those from hybrid African male parents. F2 viability was not correlated with skewed chromosomal inheritance. However, a significant difference in viability between cosmopolitan and tropical African crosses was observed. Recombination analysis supports the presence of a male-acting meiotic drive element near the centromeric region of the X-chromosome and putative recessive autosomal drive suppression. There is also evidence of another female-acting drive element linked to white. The possible role meiotic drive may contribute in shaping levels of genetic variation in D. melanogaster, and additional ways to test this hypothesis are discussed.  相似文献   

15.
Long-term cryopreservation of mouse sperm   总被引:2,自引:0,他引:2  
The objective was to determine if mouse sperm can maintain their fertilizing ability after being frozen for >10 y and whether the offspring derived from these sperm had normal fertilizing ability and phenotype. We cryopreserved sperm from six strains of mice (C57BL/6J, DBA/2N, BALB/cA, C3H/HeJ, B6D2F1 and B6C3F1) in a solution containing 18% (w/v) raffinose and 3% (w/v) skim milk, and preserved them in liquid nitrogen for >10 y. To assess the normality and fertilizing ability of these sperms, they were thawed and used for in vitro fertilization of oocytes of the same strains. Fertilization rates for C57BL/6J, DBA/2N, BALB/cA, C3H/HeJ, B6D2F1 and B6C3F1 were 66.4, 92.3, 72.8, 32.9, 60.3 and 53.7%, respectively. Furthermore, 38.3, 15.0, 43.3, 26.1, 38.3 and 16.7% of the embryos transferred to pseudopregnant females developed and produced live offspring that had normal phenotype and fertility.  相似文献   

16.
52 entries including landraces, old cultivars and wild accessions of B. oleracea and closely related Brassica species were screened for resistance against downy mildew and clubroot. Several accessions resistant to downy mildew and a few to clubroot were found. Genetic inheritance of the resistance in downy mildew was investigated by screening F1 and BC1F1 offspring from three resistant landrace accessions crossed with both a resistant and a susceptible father. The seedling resistance against downy mildew was found to be inherited recessively. This is a bit surprising as earlier papers mostly report of inheritance controlled by a single dominant gene. Previous screenings of B. oleracea resistance against downy mildew at the cotyledon stage have been done with P. parasitica isolated from B. oleracea as the original host plant. The recessive nature of the cotyledon resistance found in this screening might be due to the fact that the P. parasitica isolate was collected from B. napus fields. The clubroot seedling resistance was found to be controlled by recessive inheritance after screening the F1 offspring, this in agreement with earlier results/reports.  相似文献   

17.
This study was designed to investigate the reproductive fertility by the natural breeding of cloned male cats with domestic female cats, and to measure endocrine hormone concentration related to male reproduction such as testosterone, leutinizing hormone (LH), and follicle stimulating hormone (FSH). Cloned A, B, C, and D cats produced three, two, four, and five kittens after natural mating with four domestic female cats, respectively, despite later puberty of the cloned D cat than those of the other cloned male cats. Three of the 14 kittens expressed an odd eye color, which was produced by 1 and 2 from cloned A and B cats. The eye color of the other F1 kittens varied from nine brown to two blue. Body weight at birth ranged from 72.9 to 134.0 g. Although clone D had a poorer libido and entered puberty later than those of the other cloned male cats, he produced gonadal hormones within the average range. Four of the cloned male cats had normal fertility. The concentration of gonadal hormones in cloned male cats was similar to two control and donor cats. The concentration of testosterone was not significantly different among clones A, B, C, D, and control cats (5.99 +/- 5.68; 3.46 +/- 2.81; 6.41 +/- 2.17; 3.75 +/- 0.34; 4.0 +/- 3.63 ng/mL, p < 0.05). The concentrations of LH and FSH were not significantly different among the cloned cats (p < 0.05). Seven male and seven female (in total 14) kittens were produced by the natural breeding with four domestic female cats. These results indicated that cloned male cats have normal reproductive fertility and lie within the normal range of gonadal hormone production. All F1 kittens were produced by natural breeding and delivery, and are still alive and have normal growth health (27 months age).  相似文献   

18.
B F Hales  K Crosman  B Robaire 《Teratology》1992,45(6):671-678
Cyclophosphamide, administered to the male rat, produces increased pre- and postimplantation loss in the progeny as well as an increase in the numbers of malformed and growth retarded fetuses. The purpose of this study was to determine whether the adverse effects of chronic paternal cyclophosphamide exposure are transmissible to the next generation, the F2 progeny. Adult male rats were treated by gavage daily with saline or with cyclophosphamide (3.4 or 5.1 mg/kg) for 4 or 18 weeks and mated. The male and female offspring in each treatment group (F1 generation) were randomly mated. The resulting pregnant females were killed on day 20 of gestation to evaluate progeny outcome in the F2 generation. There was a significant increase in postimplantation loss among the offspring of the group whose fathers had been treated with cyclophosphamide at a dose of 5.1 mg/kg/day. Exposure to a dose of 5.1 mg/kg/day of cyclophosphamide also resulted in an F2 generation with a significantly decreased mean fetal weight per litter and a significant increase in the number of malformed fetuses. The malformations observed among the F2 progeny included open eyes, omphalocele, generalized edema, syndactyly, gigantism, and dwarfism. Thus, exposure of the father to cyclophosphamide does result in a specific and heritable alteration in the fertility of the surviving "apparently normal" F1 progeny. Interestingly, the adverse consequences of exposure of male rats to cyclophosphamide are similar in the F2 generation to those previously reported for the F1 progeny.  相似文献   

19.
Sexual selection by female mating preference for male nuptial coloration has been suggested as a driving force in the rapid speciation of Lake Victoria cichlid fish. This process could have been facilitated or accelerated by genetic associations between female preference loci and male coloration loci. Preferences, as well as coloration, are heritable traits and are probably determined by more than one gene. However, little is known about potential genetic associations between these traits. In turbid water, we found a population that is variable in male nuptial coloration from blue to yellow to red. Males at the extreme ends of the phenotype distribution resemble a reproductively isolated species pair in clear water that has diverged into one species with blue-grey males and one species with bright red males. Females of the turbid water population vary in mating preference coinciding with the male phenotype distribution. For the current study, these females were mated to blue males. We measured the coloration of the sires and male offspring. Parents-offspring regression showed that the sires did not affect male offspring coloration, which confirms earlier findings that the blue species breeds true. In contrast, male offspring coloration was determined by the identity of the dams, which suggests that there is heritable variation in male color genes between females. However, we found that mating preferences of the dams were not correlated with male offspring coloration. Thus, there is no evidence for strong genetic linkage between mating preference and the preferred trait in this population [Current Zoology 56 (1): 57-64 2010].  相似文献   

20.
To evaluate the long-term effects of oocyte cryopreservation on the health of the first filial generation (F1), we used B6D2F1 mice for oocyte collection, in vitro fertilization, and breeding. The female F1 mice born from the offspring of fresh mature oocytes (control group) and from the offspring of vitrified oocytes with traditional vitrification medium (VM group) and new improved vitrification medium (2P10E7D group) were maintained until 14–15 months of age for behavioral tests and 16–17 months of age for physiological analyses. Behavioral indexes, including anxiety-like status, discrimination ability, learning and memory ability, were investigated. Physiological indexes including body weight, body fat, heart rate, blood pressure, and blood lipids were also analyzed. In our results, the behavioral indexes, body weight, body fat, heart rate, blood pressure, total cholesterol (TC), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) did not show significant differences among the three groups. However, the triglyceride (TG) level of the VM group was higher than that of the 2P10E7D group. Moreover, compared with the control group, both the VM group and the 2P10E7D group showed greatly increased diastolic blood pressure. This study is the first to report that oocyte vitrification might affect metabolic physiological indexes via transgenerational inheritance rather than behaviors related to anxiety-like status and cognitive ability. Furthermore, different vitrification media might have differential transgenerational effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号