首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic and amino acid sequence analysis indicated that rice allene oxide synthase-1 (OsAOS1) is CYP74, and is clearly distinct from CYP74B, C and D subfamilies. Regio- and stereo-chemical analysis revealed the dual substrate specificity of OsAOS1 for (cis,trans)-configurational isomers of 13(S)- and 9(S)-hydroperoxyoctadecadienoic acid. GC-MS analysis showed that OsAOS1 converts 13(S)- and 9(S)-hydroperoxyoctadecadi(tri)enoic acid into their corresponding allene oxide. UV-Visible spectral analysis of native OsAOS1 revealed a Soret maximum at 393 nm, which shifted to 424 nm with several clean isobestic points upon binding of OsAOS1 to imidazole. The spectral shift induced by imidazole correlated with inhibition of OsAOS1 activity, implying that imidazole may coordinate to ferric heme iron, triggering a heme-iron transition from high spin state to low spin state. The implications and significance of a putative type II ligand-induced spin state transition in OsAOS1 are discussed. [BMB Reports 2013; 46(3):151-156]  相似文献   

2.
A novel member of the plant cytochrome P450 CYP74 family of fatty acid hydroperoxide metabolizing enzymes has been cloned from melon fruit (Cucumis melo). The cDNA is comprised of 1,446 nucleotides encoding a protein of 481 amino acids. The homology at the amino acid level to other members of the CYP74 family is 35-50%, the closest relatives being allene oxide synthases. The cDNA was expressed in Escherichia coli, and the corresponding protein was purified by affinity column chromatography. The native enzyme showed a main Soret band at 418 nm, indicative of a low spin ferric cytochrome P450, and a 447-nm peak appeared in the CO-difference spectrum. Using [U-14C]radiolabeled substrate, HPLC, UV, and GC-MS, the products of conversion of 9S-hydroperoxy-linoleic acid were identified as 9-oxo-nonanic acid and 3Z-nonenal. Kinetic analysis of this hydroperoxide lyase showed the highest rate of reaction with 9-hydroperoxy-linolenic acid followed by 9-hydroperoxy-linoleic acid and then the corresponding 13-hydroperoxides. Overall, the newly characterized cytochrome P450 enzyme is a fatty acid hydroperoxide lyase with a preference, but not absolute specificity for the 9-positional hydroperoxides of linoleic and linolenic acids.  相似文献   

3.
Bioinformatic analysis and site-directed mutagenesis allowed identification of the determinants of catalysis for CYP74, which are located in the central part of the I-helix and ERR triad. Mutations K302S and T366Y in tomato allene oxide syntase LeAOS3 induced possession of hydroperoxide lyase activity. In contrast to the wild-type MtHPL enzyme that produces C12-aldoacid, mutant forms F284I, F287V, G288I, N285A, and N285T of alfalfa hydroperoxide lyase MtHPL synthesized C13- and C11-fragments. Our data provide evidence that the CYP74 family originated from a common ancestor with hydroperoxide lyase activity.  相似文献   

4.
Expression of high quantities of alfalfa hydroperoxide lyase in Escherichia coli made it possible to study its active site and structure in more detail. Circular dichroism (CD) spectra showed that hydroperoxide lyase consists for about 75% of alpha-helices. Electron paramagnetic resonance (EPR) spectra confirmed its classification as a cytochrome P450 enzyme. The positive influence of detergents on the enzyme activity is paralleled by a spin state transition of the heme Fe(III) from low to high spin. EPR and CD spectra showed that detergents induce a subtle conformational change, which might result in improved substrate binding. Because hydroperoxide lyase is thought to be a membrane bound protein and detergents mimic a membrane environment, the more active, high spin form likely represents the in vivo conformation. Furthermore, the spin state appeared to be temperature-dependent, with the low spin state favored at low temperature. Point mutants of the highly conserved cysteine in domain D indicated that this residue might be involved in heme binding.  相似文献   

5.
Fatty acid hydroperoxide (HPO) lyase is a component of the oxylipin pathway and holds a central role in elicited plant defense. HPO lyase from bell pepper has been identified as a heme protein which shares 40% homology with allene oxide synthase, a cytochrome P450 (CYP74A). HPO lyase of immature bell pepper fruits was expressed in Escherichia coli and the enzyme was purified and characterized by spectroscopic techniques. The electronic structure and ligand coordination properties of the heme were investigated by using a series of exogenous ligands. The various complexes were characterized by using UV-visible absorption and electron paramagnetic resonance spectroscopy. The spectroscopic data demonstrated that the isolated recombinant HPO lyase has a pentacoordinate, high-spin heme with thiolate ligation. Addition of the neutral ligand imidazole or the anionic ligand cyanide results in the formation of hexacoordinate adducts that retain thiolate ligation. The striking similarities between both the ferric and ferrous HPO lyase-NO complexes with the analogous P450 complexes, suggest that the active sites of HPO lyase and P450 share common structural features.  相似文献   

6.
The lipoxygenase pathway is responsible for the production of oxylipins, which are important compounds for plant defence responses. Jasmonic acid, the final product of the allene oxide synthase/allene oxide cyclase branch of the pathway, regulates wound-induced gene expression. In contrast, C6 aliphatic aldehydes produced via an alternative branch catalysed by hydroperoxide lyase, are themselves toxic to pests and pathogens. Current evidence on the subcellular localization of the lipoxygenase pathway is conflicting, and the regulation of metabolic channelling between the two branches of the pathway is largely unknown. It is shown here that while a 13-lipoxygenase (LOX H3), allene oxide synthase and allene oxide cyclase proteins accumulate upon wounding in potato, a second 13-lipoxygenase (LOX H1) and hydroperoxide lyase are present at constant levels in both non-wounded and wounded tissues. Wound-induced accumulation of the jasmonic acid biosynthetic enzymes may thus commit the lipoxygenase pathway to jasmonic acid production in damaged plants. It is shown that all enzymes of the lipoxygenase pathway differentially localize within chloroplasts, and are largely found associated to thylakoid membranes. This differential localization is consistently observed using confocal microscopy of GFP-tagged proteins, chloroplast fractionation, and western blotting, and immunodetection by electron microscopy. While LOX H1 and LOX H3 are localized both in stroma and thylakoids, both allene oxide synthase and hydroperoxide lyase protein localize almost exclusively to thylakoids and are strongly bound to membranes. Allene oxide cyclase is weakly associated with the thylakoid membrane and is also detected in the stroma. Moreover, allene oxide synthase and hydroperoxide lyase are differentially distributed in thylakoids, with hydroperoxide lyase localized almost exclusively to the stromal part, thus closely resembling the localization pattern of LOX H1. It is suggested that, in addition to their differential expression pattern, this segregation underlies the regulation of metabolic fluxes through the alternative branches of the lipoxygenase pathway.  相似文献   

7.
Caffeic acid is a biologically active molecule that has various beneficial properties, including antioxidant, anticancer, and anti-inflammatory activities. In this study, we explored the catalytic potential of a bacterial cytochrome P450, CYP199A2, for the biotechnological production of caffeic acid. When the CYP199A2 enzyme was reacted with p-coumaric acid, it stoichiometrically produced caffeic acid. The crystal structure of CYP199A2 shows that Phe at position 185 is situated directly above, and only 6.35 Å from, the heme iron. This F185 residue was replaced with hydrophobic or hydroxylated amino acids using site-directed mutagenesis to create mutants with novel and improved catalytic properties. In whole-cell assays with the known substrate of CYP199A2, 2-naphthoic acid, only the wild-type enzyme hydroxylated 2-naphthoic acid at the C-7 and C-8 positions, whereas all of the active F185 mutants exhibited a preference for C-5 hydroxylation. Interestingly, several F185 mutants (F185V, F185L, F185I, F185G, and F185A mutants) also acquired the ability to hydroxylate cinnamic acid, which was not hydroxylated by the wild-type enzyme. These results demonstrate that F185 is an important residue that controls the regioselectivity and the substrate specificity of CYP199A2. Furthermore, Escherichia coli cells expressing the F185L mutant exhibited 5.5 times higher hydroxylation activity for p-coumaric acid than those expressing the wild-type enzyme. By using the F185L whole-cell catalyst, the production of caffeic acid reached 15 mM (2.8 g/liter), which is the highest level so far attained in biotechnological production of this compound.  相似文献   

8.
Allene oxides are a very unusual type of epoxide that, in biological systems, are formed by the enzymic dehydration of fatty acid hydroperoxides (lipoxygenase products). This reaction occurs widely in plants, in which allene oxide synthesis is a key step in the conversion of linolenic acid to jasmonic acid, the plant growth regulator. We report biosynthesis of the allene oxide (8R)-8,9-epoxyeicosa-(5Z,9,11Z,14Z)-tetraenoic acid via the (8R)-lipoxygenase metabolism of arachidonic acid in starfish oocytes. Formation of the allene oxide was deduced from high pressure liquid chromatography, UV, gas chromatography-mass spectrometry and 1H-NMR analyses of the precise structure and mechanism of biosynthesis of its major hydrolysis product, the alpha-ketol 8-hydroxy-9-ketoeicosa-(5Z,11Z,14Z)-trienoic acid. A second enzymic activity detected in the oocytes (hydroperoxide lyase) cleaves specifically the (8R)-hydroperoxy substrate into C7 and C13 fragments, identified as the hydroxyacid, (5Z)-7-hydroxyheptenoic acid, and two aldehydes, (2E,4Z,7Z)-tridecenal and its 4E isomer. Discovery of the allene oxide synthase and hydroperoxide lyase marks the first definitive localization of these enzymic activities to an animal cell. It was established previously that the (8R)-lipoxygenase metabolite (8R)-HETE will activate the maturation (re-initiation of meiosis) of starfish oocytes. The individual 8-lipoxygenase products may be involved at distinct stages of cell development.  相似文献   

9.
Bioinformatics analyses enabled us to identify the hypothetical determinants of catalysis by CYP74 family enzymes. To examine their recognition, two mutant forms F295I and S297A of tomato allene oxide synthase LeAOS3 (CYP74C3) were prepared by site-directed mutagenesis. Both mutations dramatically altered the enzyme catalysis. Both mutant forms possessed the activity of hydroperoxide lyase, while the allene oxide synthase activity was either not detectable (F295I) or significantly reduced (S297A) compared to the wild-type LeAOS3. Thus, both sites 295 and 297 localized within the "I-helix central domain" ("oxygen binding domain") are the primary determinants of CYP74 type of catalysis.  相似文献   

10.
CYP152A1 is an unusual, peroxygenase enzyme that catalyzes the beta- or alpha-hydroxylation of fatty acids by efficiently introducing an oxygen atom from H2O2 to the fatty acid. To clarify the mechanistic roles of amino acid residues in this enzyme, we have used site-directed mutagenesis of residues in the putative distal helix and measured the spectroscopic and enzymatic properties of the mutant proteins. Initially, we carried out Lys-scanning mutagenesis of amino acids in this region to determine residues of CYP152A1 that might have a mechanistic role. Among the Lys mutants, only P243K gave an absorption spectrum characteristic of a nitrogenous ligand-bound form of a ferric P450. Further investigation of the Pro243 site revealed that a P243H mutant also exhibited a nitrogen-bound form, but that the mutants P243A or P243S did not. On the hydroxylation of myristic acid by the Lys mutants, we observed a large decrease in activity for R242K and A246K. We therefore examined other mutants at amino acid positions 242 and 246. At position 246, an A246K mutant showed a roughly 19-fold lower affinity for myristic acid than the wild type. Replacing Ala246 with Ser decreased the catalytic activity, but did not affect affinity for the substrate. An A246V mutant showed slightly reduced activity and moderately reduced affinity. At position 242, an R242A showed about a fivefold lower affinity than the wild type for myristic acid. The Km values for H2O2 increased and Vmax values decreased in the order of wild type, R242K, and R242A when H2O2 was used; furthermore, Vmax/Km was greatly reduced in R242A compared with the wild type. If cumene hydroperoxide was used instead of H2O2, however, the Km values were not affected much by these substitutions. Together, our results suggest that in CYP152A1 the side chain of Pro243 is located close to the iron at the distal side of a heme molecule; the fatty acid substrate may be positioned near to Ala246 in the catalytic pocket, although Ala246 does not participate in hydrophobic interactions with the substrate; and that Arg242 is a critical residue for substrate binding and H2O2-specific catalysis.  相似文献   

11.
A heme domain of coral allene oxide synthase (cAOS) catalyzes the formation of allene oxide from fatty acid hydroperoxide. Although cAOS has a similar heme active site to that of catalase, cAOS is completely lacking in catalase activity. A close look at the hydrogen-bonding possibilities around the distal His in cAOS suggested that the imidazole ring is rotated by 180 degrees relative to that of catalase because of the hydrogen bond between Thr-66 and the distal His-67. This could contribute to the functional differences between cAOS and catalase, and to examine this possibility, we mutated Thr-66 in cAOS to Val, the corresponding residue in catalase. In contrast to the complete absence of catalase activity in wild type (WT) cAOS, T66V had a modest catalase activity. On the other hand, the mutation suppressed the native enzymatic activity of the formation of allene oxide to 14% of that of WT cAOS. In the resonance Raman spectrum, whereas WT cAOS has only a 6-coordinate/high spin heme, T66V has a 5-coordinate/high spin heme as a minor species. Because catalase adopts a 5-coordinate/high spin structure, probably the 5-coordinate/high spin portion of T66V showed the catalase activity. Furthermore, in accord with the fact that the CN affinity of catalase is higher than that of WT cAOS, the CN affinity of T66V was 8-fold higher than that of WT cAOS, indicating that the mutation could mimic the heme active site in catalase. We, therefore, propose that the hydrogen bond between Thr-66 and distal His-67 could modulate the orientation of distal His, thereby regulating the enzymatic activity in cAOS.  相似文献   

12.
In the thermophilic cytochrome P450 from the thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 (P450st), a phenylalanine residue at position 310 and an alanine residue at position 320 are located close to the heme thiolate ligand, Cys317. Single site-directed mutants F310A and A320Q and double mutant F310A/A320Q have been constructed. All mutant enzymes as well as wild-type (WT) P450st were expressed at high levels. The substitution of F310 with Ala and of A320 with Gln induced shifts in redox potential and blue shifts in Soret absorption of ferrous-CO forms, while spectral characterization showed that in the resting state, the mutants almost retained the structural integrity of the active site. The redox potential of the heme varied as follows: -481 mV (WT), -477 mV (A320Q), -453 mV (F310A), and -450 mV (F310A/A320Q). The trend in the Soret band of the ferrous-CO form was as follows: 450 nm (WT) < 449 nm (A320Q) < 446 nm (F310A) < 444 nm (F310A/A320Q). These results established that the reduction potential and electron density on the heme iron are modulated by the Phe310 and Ala320 residues in P450st. The electron density on the heme decreases in the following order: WT > A320Q > F310A > F310A/A320Q. The electron density on the heme iron infers an essential role in P450 activity. The decrease in electron density interferes with the formation of a high-valent oxo-ferryl species called Compound I. However, steady-state turnover rates of styrene epoxidation with H2O2 show the following trend: WT approximately equal to A320Q < F310A approximately equal to F310A/A320Q. The shunt pathway which can provide the two electrons and oxygen required for a P450 reaction instead of NAD(P)H and dioxygen can rule out the first and second heme reduction in the catalytic process. Because the electron density on the heme iron might be deeply involved in the k cat values in this system, the intermediate Compound 0 which is the precursor species of Compound I mainly appears to participate dominantly in epoxidation with H2O2.  相似文献   

13.
A combined theoretical and experimental study highlights the reaction mechanism of allene oxide synthase (AOS) and its possible link to hydroperoxide lyase (HPL) pathway. A previously published study (Lee et al., Nature 455 (2008) 363) has shown that the F137 residue is of central importance in differentiating between the AOS and HPL pathways after initial identical steps. In the experimental part of this study, we show that wild-type AOS from Arabidopsis or rice in fact produces both AOS and HPL products in a ratio of about 80:15, something that was found only in trace amounts before. Theoretical calculations successfully map the whole AOS pathway with 13(S)-hydroperoxy linolenic and linoleic acid as substrates. Subsequent calculations investigated the effects of in silico F137L mutation at the suggested diverging point of the two pathways. The results show that QM/MM calculations can reasonably reproduce three out of four experimentally available cases, and confirm that the pathways are energetically very close to each other, thus making a switch from one path to other plausible under different circumstances.  相似文献   

14.
Site-directed mutants of the phylogenetically conserved phenylalanine residue F393 were constructed in flavocytochrome P450 BM3 from Bacillus megaterium. The high degree of conservation of this residue in the P450 superfamily and its proximity to the heme (and its ligand Cys400) infers an essential role in P450 activity. Extensive kinetic and thermodynamic characterization of mutant enzymes F393A, F393H, and F393Y highlighted significant differences from wild-type P450 BM3. All enzymes expressed to high levels and contained their full complement of heme. While the reduction and subsequent treatment of the mutant P450s with carbon monoxide led to the formation of the characteristic P450 spectra in all cases, the absolute position of the Soret absorption varied across the series WT/F393Y (449 nm), F393H (445 nm), and F393A (444 nm). Steady-state turnover rates with both laurate and arachidonate showed the trend WT > F393Y > F393H > F393A. Conversely, the trend in the pre-steady-state flavin-to-heme electron transfer was the reverse of the steady-state scenario, with rates varying F393A > F393H > F393Y approximately wild-type. These data are consistent with the more positive substrate-free [-312 mV (F393A), -332 mV (F393H)] and substrate-bound [-151 mV (F393A), -176 mV (F393H)] reduction potentials of F393A and F393H heme domains, favoring the stabilization of the ferrous-form in the mutant P450s relative to wild-type. Elevation of the heme iron reduction potential in the F393A and F393H mutants facilitates faster electron transfer to the heme. This results in a decrease in the driving force for oxygen reduction by the ferrous heme iron, so explaining lower overall turnover of the mutant P450s. We postulate that the nature of the residue at position 393 is important in controlling the delicate equilibrium observed in P450s, whereby a tradeoff is established between the rate of heme reduction and the rate at which the ferrous heme can bind and, subsequently, reduce molecular oxygen.  相似文献   

15.
A conserved glutamate covalently attaches the heme to the protein backbone of eukaryotic CYP4 P450 enzymes. In the related Bacillus megaterium P450 BM3, the corresponding residue is Ala264. The A264E mutant was generated and characterized by kinetic and spectroscopic methods. A264E has an altered absorption spectrum compared with the wild-type enzyme (Soret maximum at approximately 420.5 nm). Fatty acid substrates produced an inhibitor-like spectral change, with the Soret band shifting to 426 nm. Optical titrations with long-chain fatty acids indicated higher affinity for A264E over the wild-type enzyme. The heme iron midpoint reduction potential in substrate-free A264E is more positive than that in wild-type P450 BM3 and was not changed upon substrate binding. EPR, resonance Raman, and magnetic CD spectroscopies indicated that A264E remains in the low-spin state upon substrate binding, unlike wild-type P450 BM3. EPR spectroscopy showed two major species in substrate-free A264E. The first has normal Cys-aqua iron ligation. The second resembles formate-ligated P450cam. Saturation with fatty acid increased the population of the latter species, suggesting that substrate forces on the glutamate to promote a Cys-Glu ligand set, present in lower amounts in the substrate-free enzyme. A novel charge-transfer transition in the near-infrared magnetic CD spectrum provides a spectroscopic signature characteristic of the new A264E heme iron ligation state. A264E retains oxygenase activity, despite glutamate coordination of the iron, indicating that structural rearrangements occur following heme iron reduction to allow dioxygen binding. Glutamate coordination of the heme iron is confirmed by structural studies of the A264E mutant (Joyce, M. G., Girvan, H. M., Munro, A. W., and Leys, D. (2004) J. Biol. Chem. 279, 23287-23293).  相似文献   

16.
Hydroperoxide lyase (HPL) cleaves lipid hydroperoxides to produce volatile flavor molecules and also potential signal molecules. We have characterized a gene from Arabidopsis that is homologous to a recently cloned HPL from green pepper (Capsicum annuum). The deduced protein sequence indicates that this gene encodes a cytochrome P-450 with a structure similar to that of allene oxide synthase. The gene was cloned into an expression vector and expressed in Escherichia coli to demonstrate HPL activity. Significant HPL activity was evident when 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid was used as the substrate, whereas activity with 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid was approximately 10-fold lower. Analysis of headspace volatiles by gas chromatography-mass spectrometry, after addition of the substrate to E. coli extracts expressing the protein, confirmed enzyme-activity data, since cis-3-hexenal was produced by the enzymatic activity of the encoded protein, whereas hexanal production was limited. Molecular characterization of this gene indicates that it is expressed at high levels in floral tissue and is wound inducible but, unlike allene oxide synthase, it is not induced by treatment with methyl jasmonate.  相似文献   

17.
Allene oxide cyclase: a new enzyme in plant lipid metabolism   总被引:10,自引:0,他引:10  
The mechanism of the biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid (12-oxo-PDA) from 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid in preparations of corn (Zea mays L.) was studied. In the initial reaction the hydroperoxide was converted into an unstable allene oxide, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid, by action of a particle-bound hydroperoxide dehydrase. A new enzyme, allene oxide cyclase, catalyzed subsequent cyclization of allene oxide into 9(S),13(S)-12-oxo-PDA. In addition, because of its chemical instability, the allene oxide underwent competing nonenzymatic reactions such as hydrolysis into alpha- and gamma-ketol derivatives as well as spontaneous cyclization into racemic 12-oxo-PDA. (+/-)-cis-12,13-Epoxy-9(Z)-octadecenoic acid and (+/-)-cis-12,13-epoxy-9(Z),15(Z)-octadecadienoic acid, in which the epoxy group was located in the same position as in the allene oxide substrate, served as potent inhibitors of corn allene oxide cyclase. On the other hand, the isomeric (+/-)-cis-9,10-epoxy-12(Z)-octadecenoic acid had little inhibitory effect. Allene oxide cyclase was present in the soluble fraction of corn homogenate and had a molecular weight of about 45,000 as judged by gel filtration. The enzyme activity was detected in several plant tissues, the highest levels being observed in potato tubers and in leaves of spinach and white cabbage.  相似文献   

18.
In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using 18O-labeled substrate and incubations in H218O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom.  相似文献   

19.
We have altered the N terminus of cytochrome f by site-directed mutagenesis of the chloroplast petA gene in Chlamydomonas reinhardtii. We have replaced the tyrosine residue, Tyr(32), located immediately downstream of the processing site Ala(29)-Gln(30)-Ala(31) by a proline. Tyr(32) is the N terminus of the mature protein and serves as the sixth axial ligand to the heme iron. This mutant, F32P, accumulated different forms of holocytochrome f and assembled them into the cytochrome b(6)f complex. The strain was able to grow phototrophically. Our results therefore contradict a previous report (Zhou, J., Fernandez-Velasco, J. G., and Malkin, R. (1996) J. Biol. Chem. 271, 1-8) that a mutation, considered to be identical to the mutation described here, prevented cytochrome b(6)f assembly. A comparative functional characterization of F32P with F29L-31L, a site-directed processing mutant in which we had replaced the processing site by a Leu(29)-Gln(30)-Leu(31) sequence (2), revealed that both mutants accumulate high spin cytochrome f, with an unusual orientation of the heme and low spin cytochrome f with an alpha-band peak at 552 nm. Both hemes have significantly lower redox potentials than wild type cytochrome f. We attribute the high spin form to uncleaved pre-holocytochrome f and the low spin form to misprocessed forms of cytochrome f that were cleaved at a position different from the regular Ala(29)-Gln-Ala(31) motif. In contrast to F29L-31L, F32P displayed a small population of functional cytochrome f, presumably cleaved at Ala(29), with characteristics close to those of wild type cytochrome f. The latter form would account for cytochrome b(6)f turnover and photosynthetic electron transfer that sustain phototrophic growth of F32P.  相似文献   

20.
Wu F  Katsir LJ  Seavy M  Gaffney BJ 《Biochemistry》2003,42(22):6871-6880
Coral allene oxide synthase (cAOS), a fusion protein with 8R-lipoxygenase in Plexaura homomalla, is a hemoprotein with sequence similarity to catalases. cAOS reacts rapidly with the oxidant peracetic acid to form heme compound I and intermediate II. Concomitantly, an electron paramagnetic resonance (EPR) signal with tyrosyl radical-like features, centered at a g-value of 2.004-2.005, is formed. The radical is identified as tyrosyl by changes in EPR spectra when deuterated tyrosine is incorporated in cAOS. The radical location in cAOS is determined by mutagenesis of Y193 and Y209. Upon oxidation, native cAOS and mutant Y209F exhibit the same radical spectrum, but no significant tyrosine radical forms in mutant Y193H, implicating Y193 as the radical site in native cAOS. Estimates of the side chain torsion angles for the radical at Y193, based on the beta-proton isotropic EPR hyperfine splitting, A(iso), are theta(1) = 21 to 30 degrees and theta(2) = -99 to -90 degrees. The results show that cAOS can cleave nonsubstrate hydroperoxides by a heterolytic path, although a homolytic course is likely taken in converting the normal substrate, 8R-hydroperoxyeicosatetraenoic acid (8R-HpETE), to product. Coral AOS achieves specificity for the allene oxide formed by selection of the homolytic pathway normally, while it inactivates by the heterolytic path with nonoptimal substrates. Accordingly, with the nonoptimal substrate, 13R-hydroperoxyoctadecadienoic acid (13R-HpODE), mutant Y193H is inactivated after turning over significantly fewer substrate molecules than required to inactivate native cAOS or the Y209F mutant because it cannot absorb oxidizing equivalents by forming a radical at Y193.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号