首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Acetylation is an important, highly conserved, and reversible post-translational modification of proteins. Previously, we showed by nano-HPLC/MS/MS that many nutrient storage proteins in the silkworm are acetylated. Among these proteins, most of the known 30K proteins were shown to be acetylated, including 23 acetylated 30K proteins containing 49 acetylated sites (Kac), indicating the importance of the acetylation of 30K proteins in silkworm. In this study, Bm30K-3, a 30K protein containing three Kac sites, was further assessed in functional studies of its acetylation. Increasing the level of Bm30K-3 acetylation by adding the deacetylase inhibitor trichostatin A (TSA) increased the levels of this protein and further inhibited cellular apoptosis induced by H2O2. In contrast, decreasing the level of acetylation by adding the acetylase inhibitor C646 could reduce the level of Bm30K-3 and increase H2O2-induced apoptosis. Subsequently, BmN cells were treated with CHX and MG132, and increasing the acetylation level using TSA was shown to inhibit protein degradation and improve the stability of Bm30K-3. Furthermore, the acetylation of Bm30K-3 could compete with its ability to be ubiquitinated, suggesting that acetylation could inhibit the ubiquitin-mediated proteasome degradation pathway, improving the stability and accumulation of proteins in cells. These results further indicate that acetylation might regulate nutrition storage and utilization in Bombyx mori, which requires further study.  相似文献   

2.
Hypertension and endothelial dysfunction are associated with various cardiovascular diseases. Hydrogen sulphide (H2S) produced by cystathionine γ‐lyase (CSE) promotes vascular relaxation and lowers hypertension. Honokiol (HNK), a natural compound in the Magnolia plant, has been shown to retain multifunctional properties such as anti‐oxidative and anti‐inflammatory activities. However, a potential role of HNK in regulating CSE and hypertension remains largely unknown. Here, we aimed to demonstrate that HNK co‐treatment attenuated the vasoconstriction, hypertension and H2S reduction caused by angiotensin II (AngII), a well‐established inducer of hypertension. We previously found that histone deacetylase 6 (HDAC6) mediates AngII‐induced deacetylation of CSE, which facilitates its ubiquitination and proteasomal degradation. Our current results indicated that HNK increased endothelial CSE protein levels by enhancing its stability in a sirtuin‐3‐independent manner. Notably, HNK could increase CSE acetylation levels by inhibiting HDAC6 catalytic activity, thereby blocking the AngII‐induced degradative ubiquitination of CSE. CSE acetylation and ubiquitination occurred mainly on the lysine 73 (K73) residue. Conversely, its mutant (K73R) was resistant to both acetylation and ubiquitination, exhibiting higher protein stability than that of wild‐type CSE. Collectively, our findings suggested that HNK treatment protects CSE against HDAC6‐mediated degradation and may constitute an alternative for preventing endothelial dysfunction and hypertensive disorders.  相似文献   

3.
4.
5.
Lysine acetylation (Kac) is an important protein post‐translational modification in both eukaryotes and prokaryotes. Herein, we report the results of a global proteome analysis of Kac and its diverse functions in rice (Oryza sativa). We identified 1353 Kac sites in 866 proteins in rice seedlings. A total of 11 Kac motifs are conserved, and 45% of the identified proteins are localized to the chloroplast. Among all acetylated proteins, 38 Kac sites are combined in core histones. Bioinformatics analysis revealed that Kac occurs on a diverse range of proteins involved in a wide variety of biological processes, especially photosynthesis. Protein–protein interaction networks of the identified proteins provided further evidence that Kac contributes to a wide range of regulatory functions. Furthermore, we demonstrated that the acetylation level of histone H3 (lysine 27 and 36) is increased in response to cold stress. In summary, our approach comprehensively profiles the regulatory roles of Kac in the growth and development of rice.  相似文献   

6.
In the present study, we investigated whether a histone deacetylase sirtuin 1 (SIRT1) can regulate the protein stability of homeodomain-interacting protein kinase 2 (HIPK2). We observed the evidence of molecular interaction between SIRT1 and HIPK2. Interestingly, overexpression or pharmacological activation of SIRT1 promoted ubiquitination and the proteasomal degradation of HIPK2 whereas inhibition of SIRT1 activity increased the protein level of HIPK2. Furthermore, a SIRT1 activator decreased the level of HIPK2 acetylation whereas an inhibitor increased the acetylation level. These results suggest that SIRT1 may deacetylate and promote the ubiquitination and subsequent proteasomal degradation of HIPK2.  相似文献   

7.
Lysine acetylation (Kac) is well known to occur in histones for chromatin function and epigenetic regulation. In addition to histones, Kac is also detected in a large number of proteins with diverse biological functions. However, Kac function and regulatory mechanism for most proteins are unclear. In this work, we studied mutation effects of rice genes encoding cytoplasm-localized histone deacetylases (HDAC) on protein acetylome and found that the HDAC protein HDA714 was a major deacetylase of the rice non-histone proteins including many ribosomal proteins (r-proteins) and translation factors that were extensively acetylated. HDA714 loss-of-function mutations increased Kac levels but reduced abundance of r-proteins. In vitro and in vivo experiments showed that HDA714 interacted with r-proteins and reduced their Kac. Substitutions of lysine by arginine (depleting Kac) in several r-proteins enhance, while mutations of lysine to glutamine (mimicking Kac) decrease their stability in transient expression system. Ribo-seq analysis revealed that the hda714 mutations resulted in increased ribosome stalling frequency. Collectively, the results uncover Kac as a functional posttranslational modification of r-proteins which is controlled by histone deacetylases, extending the role of Kac in gene expression to protein translational regulation.  相似文献   

8.
Like many other Lepidoptera, fifth-stage Calpodes larvae have three major hemolymph proteins. Their molecular weights were estimated by 3-15% nondenaturing polyacrylamide gel electrophoresis (N-PAGE) as 470,000 (arylphorin; Ar), 580,000 (storage protein 2; SP2) and 720,000 (storage protein 1; SP1). Carbohydrate is associated with all three, but only Ar has lipid. The three proteins have been purified by preparative N-PAGE and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. On 3-15% SDS gels, Ar dissociated into 82,000 Mr subunits, SP2 into 86,000 Mr subunits, and SP1 into both 86,000 and 90,000 Mr subunits. The 470,000 Mr protein is identified as Ar because it is rich in aromatic amino acids. The 580,000 and 720,000 Mr proteins are rich in glycine and are called storage proteins. Electron microscopy of negatively stained preparations shows that each polymer has a different geometrical arrangement of subunits. SP1 is a cube made from eight subunits. SP2 is a hexamer in the form of a pentahedral prism. Ar is probably an octahedron made from six subunits. All three geometrical arrangements could permit the presence of a central carrying space.  相似文献   

9.
10.
11.
Deeks ED  Cook JP  Day PJ  Smith DC  Roberts LM  Lord JM 《Biochemistry》2002,41(10):3405-3413
Several protein toxins, including the A chain of ricin (RTA), enter mammalian cells by endocytosis and subsequently reach their cytosolic substrates by translocation across the endoplasmic reticulum (ER) membrane. To achieve this export, such toxins exploit the ER-associated protein degradation (ERAD) pathway but must escape, at least in part, the normal degradative fate of ERAD substrates. Toxins that translocate from the ER have an unusually low lysine content. Since lysyl residues are potential ubiquitination sites, it has been proposed that this paucity of lysines reduces the chance of ubiquitination and subsequent ubiquitin-mediated proteasomal degradation [Hazes, B., and Read, R. J. (1997) Biochemistry 36, 11051-11054]. Here we provide experimental support for this hypothesis. The two lysyl residues within RTA were changed to arginyl residues. Their replacement in RTA did not have a significant stabilizing effect, suggesting that the endogenous lysyl residues are not the usual sites for ubiquitin attachment. However, when four additional lysines were introduced into RTA in a way that did not compromise the activity, structure, or stability of the toxin, degradation was significantly enhanced. Enhanced degradation resulted from ubiquitination that predisposed the toxin to proteasomal degradation. Treatment with the proteasome inhibitor clasto-lactacystin beta-lactone increased the cytotoxicity of the lysine-rich RTA to a level approaching that of wild-type ricin. The introduction of four additional lysyl residues into a second ribosome-inactivating protein, abrin A chain, also dramatically decreased the cytotoxicity of the holotoxin compared to wild-type abrin. This effect could also be reversed by proteasomal inhibition. Our data support the hypothesis that the evolution of a low lysine content is a degradation-avoidance strategy for toxins that retrotranslocate from the ER.  相似文献   

12.
Histone deacetylases (HDAC) play a critical role in chromatin modification and gene expression. Recent evidence indicates that HDACs can also regulate functions of nonhistone proteins by catalyzing the removal of acetylated lysine residues. Here, we show that the HDAC inhibitor LBH589 down-regulates DNA methyltransferase 1 (DNMT1) protein expression in the nucleus of human breast cancer cells. Cotreatment with the proteasomal inhibitor MG-132 abolishes the ability of LBH589 to reduce DNMT1, suggesting that the proteasomal pathway mediates DNMT1 degradation on HDAC inhibition. Deletion of the NH(2)-terminal 120 amino acids of DNMT1 diminishes LBH589-induced ubiquitination, indicating that this domain is essential for its proteasomal degradation. DNMT1 recruits the molecular chaperone heat shock protein 90 (Hsp90) to form a chaperone complex. Treatment with LBH589 induces hyperacetylation of Hsp90, thereby inhibiting the association of DNMT1 with Hsp90 and promoting ubiquitination of DNMT1. In addition, inactivation of HDAC1 activity by small interfering RNA and MS-275 is associated with Hsp90 acetylation in conjunction with reduction of DNMT1 protein expression. We conclude that the stability of DNMT1 is maintained in part through its association with Hsp90. Disruption of Hsp90 function by HDAC inhibition is a unique mechanism that mediates the ubiquitin-proteasome pathway for DNMT1 degradation. Our studies suggest a new role for HDAC1 and identify a novel mechanism of action for the HDAC inhibitors as down-regulators of DNMT1.  相似文献   

13.
The Skp-Cul-F box (SCF) ubiquitin E3 ligase machinery recognizes predominantly phosphodegrons or, less commonly, an (I/L)Q molecular signature within substrates to facilitate their recruitment in mediating protein ubiquitination and degradation. Here, we examined the molecular signals that determine the turnover of the multifunctional enzyme nucleoside diphosphate kinase A (NDPK-A) that controls cell proliferation. NDPK-A protein exhibits a half-life of ∼6 h in HeLa cells and is targeted for ubiquitylation through actions of the F-box protein FBXO24. SCF-FBXO24 polyubiquitinates NDPK-A at K85, and two NH2-terminal residues, L55 and K56, were identified as important molecular sites for FBXO24 interaction. Importantly, K56 acetylation impairs its interaction with FBXO24, and replacing K56 with Q56, an acetylation mimic, reduces NDPK-A FBXO24 binding capacity. The acetyltransferase GCN5 catalyzes K56 acetylation within NDPK-A, thereby stabilizing NDPK-A, whereas GCN5 depletion in cells accelerates NDPK-A degradation. Cellular expression of an NDPK-A acetylation mimic or FBXO24 silencing increases NDPK-A life span which, in turn, impairs cell migration and wound healing. We propose that lysine acetylation when presented in the appropriate context may be recognized by some F-box proteins as a unique inhibitory molecular signal for their recruitment to restrict substrate degradation.  相似文献   

14.
MYCN amplification is an independent risk factor for poor prognosis in neuroblastoma (NB), but its protein product cannot be directly targeted because of protein structure. Thus, this study aimed to explore novel ways to indirectly target N-Myc by regulating its post-translational modifications (PTMs) and therefore protein stability. N-Myc coimmunoprecipitation combined with HPLC–MS/MS identified 16 PTM residues and 114 potential N-Myc-interacting proteins. Notably, both acetylation and ubiquitination were identified on lysine 199 of N-Myc. We then discovered that p300, which can interact with N-Myc, modulated the protein stability of N-Myc in MYCN-amplified NB cell lines and simultaneously regulated the acetylation level and ubiquitination level on lysine-199 of N-Myc protein in vitro. Furthermore, p300 correlated with poor prognosis in NB patients. Taken together, p300 can be considered as a potential therapeutic target to treat MYCN-amplified NB patients, and other identified PTMs and interacting proteins also provide potential targets for further study.  相似文献   

15.
Two storage proteins, storage protein-1 (SP1) and storage protein-2 (SP2), were found in hemolymph and fat body during the development of Hyphantria cunea, the fall webworm. Both storage proteins show similiar quantitative changes during development in males and females; however, SP1 is more abundant. The hemolymph of last instar larvae contains high concentrations of the storage proteins. However, following pupation, the storage proteins accumulate in fat bodies. SP1 peaks in the hemolymph of males and females late in last instar larvae (8-day-old 7th instar larvae). SP1 has a native molecular weight of 460,000 and consists of six identical subunits (Mr = 76,700), while SP2 has a molecular weight of 450,000 and is composed of two different subunits (Mr = 74,100 and 72,400). Both SP1 and SP2 are hexamers and are phosphorylated glycolipoproteins. The pl values of SP1 and SP2 were determined to be 5.70 and 5.50, respectively. Antibodies raised against SP1 react positively with vitellogenin and ovary extract, as well as with proteins in the hemolymph from last instar larvae and proteins in pupal fat bodies. Storage protein synthesis starts in fat bodies of a 4-day-old 7th instar larvae and in female peaks at 6–8 days of the 7th instar.  相似文献   

16.
Introduction of antibodies specific for acetylated lysine has significantly improved the detection of endogenous acetylation sites by mass spectrometry. Here, we describe a new, commercially available mixture of anti-lysine acetylation (Kac) antibodies and show its utility for in-depth profiling of the acetylome. Specifically, seven complementary monoclones with high specificity for Kac were combined into a final anti-Kac reagent which results in at least a twofold increase in identification of Kac peptides over a commonly used Kac antibody. We outline optimal antibody usage conditions, effective offline basic reversed phase separation, and use of state-of-the-art LC-MS technology for achieving unprecedented coverage of the acetylome. The methods were applied to quantify acetylation sites in suberoylanilide hydroxamic acid-treated Jurkat cells. Over 10,000 Kac peptides from over 3000 Kac proteins were quantified from a single stable isotope labeling by amino acids in cell culture labeled sample using 7.5 mg of peptide input per state. This constitutes the deepest coverage of acetylation sites in quantitative experiments obtained to-date. The approach was also applied to breast tumor xenograft samples using isobaric mass tag labeling of peptides (iTRAQ4, TMT6 and TMT10-plex reagents) for quantification. Greater than 6700 Kac peptides from over 2300 Kac proteins were quantified using 1 mg of tumor protein per iTRAQ 4-plex channel. The novel reagents and methods we describe here enable quantitative, global acetylome analyses with depth and sensitivity approaching that obtained for other well-studied post-translational modifications such as phosphorylation and ubiquitylation, and should have widespread application in biological and clinical studies employing mass spectrometry-based proteomics.Lysine acetylation (Kac)1 is a well conserved, reversible post-translational modification (PTM) involved in multiple cellular processes (1). Acetylation is regulated by two classes of enzymes: lysine acetyltransferases (KATs) and histone deacetylases (HDACs) (24). This modification was originally identified as a nuclear event on histone proteins and has been long appreciated for its role in epigenetic and DNA-dependent processes. With the help of a growing number of large-scale acetylation studies, it has become evident that lysine acetylation is ubiquitous, also occurring on cytoplasmic and mitochondrial proteins and has a role in signaling, metabolism, and immunity (1, 46). Therefore, the examination of lysine acetylation on nonhistone proteins has gained a prominent role in PTM analysis.To date, the identification of large numbers of acetylation sites has been challenging because of the substoichiometric nature of this modification (7, 8). Additionally, global acetylation is generally less abundant than phosphorylation and ubiquitylation (1). The introduction of antibodies specific for lysine acetylation has significantly improved the ability to enrich and identify thousands of sites (914). A landmark study by Choudhary et al. used anti-Kac antibodies to globally map 3600 lysine acetylation sites on 1750 proteins, thereby demonstrating the feasibility of profiling the acetylome (10). A more recent study by Lundby et al. investigated the function and distribution of acetylation sites in 16 different rat tissues, and identified, in aggregate, 15,474 acetylation sites from 4541 proteins (12).Although anti-acetyl lysine antibodies have been a breakthrough for globally mapping acetylation sites (912), it remains a challenge to identify large numbers of lysine acetylation sites from a single sample, as is now routinely possible for phosphorylation and ubiquitylation (13, 1518). To improve the depth-of-coverage in acetylation profiling experiments there is a clear need for (1) alternative anti-acetyl lysine antibodies with higher specificity, (2) optimized antibody usage parameters, and (3) robust proteomic workflows that permit low to moderate protein input. In this study, we describe a newly commercialized mixture of anti-Kac antibodies and detail a complete proteomic workflow for achieving unprecedented coverage of the acetylome from a single stable isotope labeling by amino acids in cell culture (SILAC) labeled sample as well as isobaric tags for relative and absolute quantitation (iTRAQ)- and tandem mass tag (TMT)-labeled samples.  相似文献   

17.
To investigate the effect of mutations in the p53 C-terminal domain on MDM2-mediated degradation, we introduced single and multiple point mutations into a human p53 cDNA at four putative acetylation sites (amino acid residues 372, 373, 381, and 382). Substitution of all four lysine residues by alanines (the A4 mutant) and single lysine-to-alanine substitutions were functional in sequence-specific DNA binding and transactivation; however, the A4 mutant protein was resistant to MDM2-mediated degradation, whereas the single lysine substitutions were not. Although the A4 mutant protein and the single lysine substitutions both bound MDM2 reasonably well, the single lysine substitutions underwent normal MDM2-dependent ubiquitination, whereas the A4 protein was inefficiently ubiquitinated. In addition, the A4 mutant protein was found in the cytoplasm as well as in the nucleus of a subpopulation of cells, unlike wild-type p53, which is mostly nuclear. The partially cytoplasmic distribution of A4 mutant protein was not due to a defect in nuclear import because inhibition of nuclear export by leptomycin B resulted in nuclear accumulation of the protein. Taken together, the data suggest that mutations in the putative acetylation sites of the p53 C-terminal domain interfere with ubiquitination, thereby regulating p53 degradation.  相似文献   

18.
赖氨酸乙酰化是重要的蛋白质翻译后修饰之一,广泛存在于细胞的生理和病理过程.组蛋白乙酰基转移酶1(HAT1)作为第一个被鉴定的蛋白ε-氨基赖氨酸乙酰基转移酶,具有介导组蛋白和非组蛋白乙酰化的作用.然而,在肝癌细胞中HAT1介导的乙酰化蛋白质及其修饰位点目前仍不清楚.本研究首先揭示了 HAT1在肝癌组织中呈高表达,并且与预...  相似文献   

19.
It is now becoming apparent that cross-talk between two protein lysine modifications, acetylation and ubiquitination, is a critical regulatory mechanism controlling vital cellular functions. The most apparent effect is the inhibition of proteasome-mediated protein degradation by lysine acetylation. Analysis of the underlying mechanisms, however, shows that, besides a direct competition between the two lysine modifications, more complex and indirect processes also connect these two signalling pathways. These findings point to protein lysine acetylation as a potential regulator of various cellular functions involving protein ubiquitination.  相似文献   

20.
Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3) and the ubiquitin-conjugating enzyme (E2), where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号