首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kadir R  Bakhrat A  Tokarsky R  Abdu U 《PloS one》2012,7(5):e38010
Rad9, Rad1, and Hus1 (9-1-1) are part of the DNA integrity checkpoint control system. It was shown previously that the C-terminal end of the human Rad9 protein, which contains a nuclear localization sequence (NLS) nearby, is critical for the nuclear transport of Rad1 and Hus1. In this study, we show that in Drosophila, Hus1 is found in the cytoplasm, Rad1 is found throughout the entire cell and that Rad9 (DmRad9) is a nuclear protein. More specifically, DmRad9 exists in two alternatively spliced forms, DmRad9A and DmRad9B, where DmRad9B is localized at the cell nucleus, and DmRad9A is found on the nuclear membrane both in Drosophila tissues and also when expressed in mammalian cells. Whereas both alternatively spliced forms of DmRad9 contain a common NLS near the C terminus, the 32 C-terminal residues of DmRad9A, specific to this alternative splice form, are required for targeting the protein to the nuclear membrane. We further show that activation of a meiotic checkpoint by a DNA repair gene defect but not defects in the anchoring of meiotic chromosomes to the oocyte nuclear envelope upon ectopic expression of non-phosphorylatable Barrier to Autointegration Factor (BAF) dramatically affects DmRad9A localization. Thus, by studying the localization pattern of DmRad9, our study reveals that the DmRad9A C-terminal region targets the protein to the nuclear membrane, where it might play a role in response to the activation of the meiotic checkpoint.  相似文献   

2.
DNA double-strand breaks (DSBs) can arise at unpredictable locations after DNA damage or in a programmed manner during meiosis. DNA damage checkpoint response to accidental DSBs during mitosis requires the Rad53 effector kinase, whereas the meiosis-specific Mek1 kinase, together with Red1 and Hop1, mediates the recombination checkpoint in response to programmed meiotic DSBs. Here we provide evidence that exogenous DSBs lead to Rad53 phosphorylation during the meiotic cell cycle, whereas programmed meiotic DSBs do not. However, the latter can trigger phosphorylation of a protein fusion between Rad53 and the Mec1-interacting protein Ddc2, suggesting that the inability of Rad53 to transduce the meiosis-specific DSB signals might be due to its failure to access the meiotic recombination sites. Rad53 phosphorylation/activation is elicited when unrepaired meiosis-specific DSBs escape the recombination checkpoint. This activation requires homologous chromosome segregation and delays the second meiotic division. Altogether, these data indicate that Rad53 prevents sister chromatid segregation in the presence of unrepaired programmed meiotic DSBs, thus providing a salvage mechanism ensuring genetic integrity in the gametes even in the absence of the recombination checkpoint.  相似文献   

3.
Repair of programmed DNA double-strand breaks (DSBs) by meiotic recombination relies on the generation of flanking 3' single-stranded DNA overhangs and their interaction with a homologous double-stranded DNA template. In various common model organisms, the ubiquitous strand exchange protein Rad51 and its meiosis-specific homologue Dmc1 have been implicated in the joint promotion of DNA-strand exchange at meiotic recombination sites. However, the division of labor between these two recombinases is still a puzzle. Using RNAi and gene-disruption experiments, we have studied their roles in meiotic recombination and chromosome pairing in the ciliated protist Tetrahymena as an evolutionarily distant meiotic model. Cytological and electrophoresis-based assays for DSBs revealed that, without Rad51p, DSBs were not repaired. However, in the absence of Dmc1p, efficient Rad51p-dependent repair took place, but crossing over was suppressed. Immunostaining and protein tagging demonstrated that only Dmc1p formed strong DSB-dependent foci on meiotic chromatin, whereas the distribution of Rad51p was diffuse within nuclei. This suggests that meiotic nucleoprotein filaments consist primarily of Dmc1p. Moreover, a proximity ligation assay confirmed that little if any Rad51p forms mixed nucleoprotein filaments with Dmc1p. Dmc1p focus formation was independent of the presence of Rad51p. The absence of Dmc1p did not result in compensatory assembly of Rad51p repair foci, and even artificial DNA damage by UV failed to induce Rad51p foci in meiotic nuclei, while it did so in somatic nuclei within one and the same cell. The observed interhomologue repair deficit in dmc1Δ meiosis is consistent with a requirement for Dmc1p in promoting the homologue as the preferred recombination partner. We propose that relatively short and/or transient Rad51p nucleoprotein filaments are sufficient for intrachromosomal recombination, whereas long nucleoprotein filaments consisting primarily of Dmc1p are required for interhomolog recombination.  相似文献   

4.
Yoo S  McKee BD 《DNA Repair》2005,4(2):231-242
Rad51 is a crucial enzyme in DNA repair, mediating the strand invasion and strand exchange steps of homologous recombination (HR). Mutations in the Drosophila Rad51 gene (spn-A) disrupt somatic as well as meiotic double-strand break (DSB) repair, similar to fungal Rad51 genes. However, the sterility of spn-A mutant females prevented a thorough analysis of the role of Rad51 in meiosis. In this study, we generated transgenic animals that express spn-A dsRNA under control of an inducible promoter, and examined the effects of inhibiting expression of spn-A on DNA repair, meiotic recombination and meiotic chromosome pairing and segregation. We found that depletion of spn-A mRNA had no effect on the viability of non-mutagen-treated transgenic animals but greatly reduced the survival of larvae that were exposed to the radiomimetic drug MMS, in agreement with the MMS and X-ray sensitivity of spn-A mutant animals. We also found that increases in dose of spn-A gene enhanced larval resistance to MMS exposure, suggesting that at high damage levels, Rad51 protein levels may be limiting for DNA repair. spn-A RNAi strongly stimulated X-X nondisjunction and decreased recombination along the X in female meiosis, consistent with a requirement of Rad51 in meiotic recombination. However, neither RNAi directed against the spn-A mRNA nor homozygosity for a spn-A null mutation had any effect on male fertility or on X-Y segregation in male meiosis, indicating that Rad51 likely plays no role in male meiotic chromosome pairing. Our results support a central role for Rad51 in HR in both somatic and meiotic DSB repair, but indicate that Rad51 in Drosophila is dispensable for meiotic chromosome pairing. Our results also provide the first demonstration that RNAi can be used to inhibit the functions of meiotic genes in Drosophila.  相似文献   

5.
Rad17是细胞周期检控点信号转导过程中的一个关键检控蛋白,在DNA损伤检控和DNA复制检控中具有重要功能。但Rad17在细胞减数分裂中的检控作用还不是很清楚。因细胞减数分裂在睾丸组织中非常活跃,应用Western印迹检测Rad17在不同发育时期的小鼠睾丸组织中的表达及其磷酸化水平,并应用免疫组化的方法检测小鼠睾丸组织不同时期生殖细胞内Rad17的表达变化。结果显示Rad17在小鼠睾丸组织内高表达,而在肝、肾等组织中表达水平较低;Rad17在不同周龄的小鼠睾丸组织中均高水平表达,但在4周龄以后的小鼠睾丸组织中其磷酸化水平明显升高;免疫组化结果显示Rad17在精原细胞、精母细胞的细胞核中高表达,但在成熟精子细胞中消失。这些结果提示Rad17在小鼠睾丸生殖细胞减数分裂过程中也起重要检控作用。  相似文献   

6.
Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that exhibits a preference for repairing double strand breaks (DSBs) using sister chromatids, in contrast to the conserved, meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1Δ mutants, where the failure to repair meiotic DSBs triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A, makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors. Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs.  相似文献   

7.
Homologous recombination events occurring during meiotic prophase I ensure the proper segregation of homologous chromosomes at the first meiotic division. These events are initiated by programmed double-strand breaks produced by the Spo11 protein and repair of such breaks by homologous recombination requires a strand exchange activity provided by the Rad51 protein. We have recently reported that the absence of AtXrcc3, an ArabidopsisRad51 paralogue, leads to extensive chromosome fragmentation during meiosis, first visible in diplotene of meiotic prophase I. The present study clearly shows that this fragmentation results from un- or mis-repaired AtSpo11-1 induced double-strand breaks and is thus due to a specific defect in the meiotic recombination process.  相似文献   

8.
The Rad51 is a highly conserved protein throughout the eukaryotic kingdom and an essential enzyme in DNA repair and recombination. It possesses DNA binding activity and ATPase activity, and interacts with meiotic chromosomes during prophase I of meiosis. Drosophila Rad51, Spindle-A (SpnA) protein has been shown to be involved in repair of DNA damage in somatic cells and meiotic recombination in female germ cells. In this study, DNA binding activity of SpnA is demonstrated by both agarose gel mobility shift assay and restriction enzyme protection assay. SpnA is also shown to interact with meiotic chromosomes during prophase I in the primary spermatocytes of hsp26-spnA transgenic flies. In addition, SpnA is highly expressed in embryos, and the depletion of SpnA by RNA interference (RNAi) leads to embryonic lethality implying that SpnA is involved in early embryonic development. Therefore, these results suggest that Drosophila SpnA protein possesses properties similar to mammalian Rad51 homologs.  相似文献   

9.
Meiotic recombination and DNA repair are mediated by overlapping sets of genes. In the yeast Saccharomyces cerevisiae, many genes required to repair DNA double-strand breaks are also required for meiotic recombination. In contrast, mutations in genes required for nucleotide excision repair (NER) have no detectable effects on meiotic recombination in S. cerevisiae. The Drosophila melanogaster mei-9 gene is unique among known recombination genes in that it is required for both meiotic recombination and NER. We have analyzed the mei-9 gene at the molecular level and found that it encodes a homologue of the S. cerevisiae excision repair protein Rad1, the probable homologue of mammalian XPF/ERCC4. Hence, the predominant process of meiotic recombination in Drosophila proceeds through a pathway that is at least partially distinct from that of S. cerevisiae, in that it requires an NER protein. The biochemical properties of the Rad1 protein allow us to explain the observation that mei-9 mutants suppress reciprocal exchange without suppressing the frequency of gene conversion.  相似文献   

10.
An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control   总被引:13,自引:0,他引:13  
Rad51 is a conserved protein essential for recombinational repair of double-stranded DNA breaks (DSBs) in somatic cells and during meiosis in germ cells. Yeast Rad51 mutants are viable but show meiosis defects. In the mouse, RAD51 deletions cause early embryonic death, suggesting that in higher eukaryotes Rad51 is required for viability. Here we report the identification of SpnA as the Drosophila Rad51 gene, whose sequence among the five known Drosophila Rad51-like genes is most closely related to the Rad51 homologs of human and yeast. DmRad51/spnA null mutants are viable but oogenesis is disrupted by the activation of a meiotic recombination checkpoint. We show that the meiotic phenotypes result from an inability to effectively repair DSBs. Our study further demonstrates that in Drosophila the Rad51-dependent homologous recombination pathway is not essential for DNA repair in the soma, unless exposed to DNA damaging agents. We therefore propose that under normal conditions a second, Rad51-independent, repair pathway prevents the lethal effects of DNA damage.  相似文献   

11.
RecA protein is involved in homology search and strand exchange processes during recombination. Mitotic cells in eukaryotes express one RecA, Rad51, which is essential for the repair of double-strand breaks (DSBs). Additionally, meiotic cells induce the second RecA, Dmc1. Both Rad51 and Dmc1 are necessary to generate a crossover between homologous chromosomes, which ensures the segregation of the chromosomes at meiotic division I. It is largely unknown how the two RecAs cooperate during meiotic recombination. In this review, recent advances on our knowledge about the roles of Rad51 and Dmc1 during meiosis are summarized and discussed.  相似文献   

12.
The hop2 mutant of Saccharomyces cerevisiae arrests in meiosis with extensive synaptonemal complex (SC) formation between nonhomologous chromosomes. A screen for multicopy suppressors of a hop2-ts allele identified the MND1 gene. The mnd1-null mutant arrests in meiotic prophase, with most double-strand breaks (DSBs) unrepaired. A low level of mature recombinants is produced, and the Rad51 protein accumulates at numerous foci along chromosomes. SC formation is incomplete, and homolog pairing is severely reduced. The Mnd1 protein localizes to chromatin throughout meiotic prophase, and this localization requires Hop2. Unlike recombination enzymes such as Rad51, Mnd1 localizes to chromosomes even in mutants that fail to initiate meiotic recombination. The Hop2 and Mnd1 proteins coimmunoprecipitate from meiotic cell extracts. These results suggest that Hop2 and Mnd1 work as a complex to promote meiotic chromosome pairing and DSB repair. The identification of Hop2 and Mnd1 homologs in other organisms suggests that the function of this complex is conserved among eukaryotes.  相似文献   

13.
The Schizosaccharomyces pombe homologue of Mre11, Rad32, is required for repair of UV- and ionising radiation-induced DNA damage and meiotic recombination. In this study we have investigated the role of Rad32 and other DNA damage response proteins in non-homologous end joining (NHEJ) and telomere length maintenance in S.pombe. We show that NHEJ in S.pombe occurs by an error-prone mechanism, in contrast to the accurate repair observed in Saccharomyces cerevisiae. Deletion of the rad32 gene results in a modest reduction in NHEJ activity and the remaining repair events that occur are accurate. Mutations in two of the phosphoesterase motifs in Rad32 have no effect on the efficiency or accuracy of end joining, suggesting that the role of Rad32 protein may be to recruit another nuclease(s) for processing during the end joining reaction. We also analysed NHEJ in other DNA damage response mutants and showed that the checkpoint mutant rad3-d and two recombination mutants defective in rhp51 and rhp54 (homologues of S.cerevisiae RAD51 and RAD54, respectively) are not affected. However disruption of rad22, rqh1 and rhp9 / crb2 (homologues of the S.cerevisiae RAD52, SGS1 and RAD9 genes) resulted in increased NHEJ activity. Telomere lengths in the rad32, rhp9 and rqh1 null alleles were reduced to varying extents intermediate between the lengths observed in wild-type and rad3 null cells.  相似文献   

14.
Homologous recombination is important for the repair of double-strand breaks during meiosis. Eukaryotic cells require two homologs of Escherichia coli RecA protein, Rad51 and Dmc1, for meiotic recombination. To date, it is not clear, at the biochemical level, why two homologs of RecA are necessary during meiosis. To gain insight into this, we purified Schizosaccharomyces pombe Rad51 and Dmc1 to homogeneity. Purified Rad51 and Dmc1 form homo-oligomers, bind single-stranded DNA preferentially, and exhibit DNA-stimulated ATPase activity. Both Rad51 and Dmc1 promote the renaturation of complementary single-stranded DNA. Importantly, Rad51 and Dmc1 proteins catalyze ATP-dependent strand exchange reactions with homologous duplex DNA. Electron microscopy reveals that both S. pombe Rad51 and Dmc1 form nucleoprotein filaments. Rad51 formed helical nucleoprotein filaments on single-stranded DNA, whereas Dmc1 was found in two forms, as helical filaments and also as stacked rings. These results demonstrate that Rad51 and Dmc1 are both efficient recombinases in lower eukaryotes and reveal closer functional and structural similarities between the meiotic recombinase Dmc1 and Rad51. The DNA strand exchange activity of both Rad51 and Dmc1 is most likely critical for proper meiotic DNA double-strand break repair in lower eukaryotes.  相似文献   

15.
During meiosis, VDE (PI-SceI), a homing endonuclease in Saccharomyces cerevisiae, introduces a double-strand break (DSB) at its recognition sequence and induces homologous recombinational repair, called homing. Meiosis-specific RecA homolog Dmc1p, as well as mitotic RecA homolog Rad51p, acts in the process of meiotic recombination, being required for strand invasion and exchange. In this study, recruitment of Dmc1p and Rad51p to the VDE-induced DSB repair site is investigated by chromatin immunoprecipitation assay. It is revealed that Dmc1p and Rad51p are loaded to the repair site in an independent manner. Association of Rad51p requires other DSB repair proteins of Rad52p, Rad55p, and Rad57p, while loading of Dmc1p is facilitated by the different protein, Sae3p. Absence of Tid1p, which can bind both RecA homologs, appears specifically to cause an abnormal distribution of Dmc1p. Lack of Hop2, Mnd1p, and Sae1p does not impair recruitment of both RecA homologs. These findings reveal the discrete functions of each strand invasion protein in VDE-initiated homing, confirm the similarity between VDE-initiated homing and Spo11p-initiated meiotic recombination, and demonstrate the availability of VDE-initiated homing for the study of meiotic recombination.  相似文献   

16.
Rad51 is a key protein in homologous recombination performing homology search and DNA strand invasion. After DNA strand exchange Rad51 protein is stuck on the double-stranded heteroduplex DNA product of DNA strand invasion. This is a problem, because DNA polymerase requires access to the invading 3′-OH end to initiate DNA synthesis. Here we show that, the Saccharomyces cerevisiae dsDNA motor protein Rad54 solves this problem by dissociating yeast Rad51 protein bound to the heteroduplex DNA after DNA strand invasion. The reaction required species-specific interaction between both proteins and the ATPase activity of Rad54 protein. This mechanism rationalizes the in vivo requirement of Rad54 protein for the turnover of Rad51 foci and explains the observed dependence of the transition from homologous pairing to DNA synthesis on Rad54 protein in vegetative and meiotic yeast cells.  相似文献   

17.
Lorenz A  Estreicher A  Kohli J  Loidl J 《Chromosoma》2006,115(4):330-340
In fission yeast, meiotic prophase nuclei develop structures known as linear elements (LinEs), instead of a canonical synaptonemal complex. LinEs contain Rec10 protein. While Rec10 is essential for meiotic recombination, the precise role of LinEs in this process is unknown. Using in situ immunostaining, we show that Rec7 (which is required for meiosis-specific DNA double-strand break (DSB) formation) aggregates in foci on LinEs. The strand exchange protein Rad51, which is known to mark the sites of DSBs, also localizes to LinEs, although to a lesser degree. The number of Rec7 foci corresponds well with the average number of genetic recombination events per meiosis suggesting that Rec7 marks the sites of recombination. Rec7 and Rad51 foci do not co-localize, presumably because they act sequentially on recombination sites. The localization of Rec7 is dependent on Rec10 but independent of the DSB-inducing protein Rec12/Spo11. Neither Rec7 nor Rad51 localization depends on the LinE-associated proteins Hop1 and Mek1, but the formation of Rad51 foci depends on Rec10, Rec7, and, as expected, Rec12/Spo11. We propose that LinEs form around designated recombination sites before the induction of DSBs and that most, if not all, meiotic recombination initiates within the setting provided by LinEs.  相似文献   

18.
The Spo11 protein initiates meiotic recombination by generating DNA double-strand breaks (DSBs) and is required for meiotic synapsis in S. cerevisiae. Surprisingly, Spo11 homologs are dispensable for synapsis in C. elegans and Drosophila yet required for meiotic recombination. Disruption of mouse Spo11 results in infertility. Spermatocytes arrest prior to pachytene with little or no synapsis and undergo apoptosis. We did not detect Rad51/Dmc1 foci in meiotic chromosome spreads, indicating DSBs are not formed. Cisplatin-induced DSBs restored Rad51/Dmc1 foci and promoted synapsis. Spo11 localizes to discrete foci during leptotene and to homologously synapsed chromosomes. Other mouse mutants that arrest during meiotic prophase (Atm -/-, Dmc1 -/-, mei1, and Morc(-/-)) showed altered Spo11 protein localization and expression. We speculate that there is an additional role for Spo11, after it generates DSBs, in synapsis.  相似文献   

19.
An open question in meiosis is whether the Rad51 recombination protein functions solely in meiotic recombination or whether it is also involved in the chromosome homology search. To address this question, we have performed three-dimensional high-resolution immunofluorescence microscopy to visualize native Rad51 structures in maize male meiocytes. Maize has two closely related RAD51 genes that are expressed at low levels in differentiated tissues and at higher levels in mitotic and meiotic tissues. Cells and nuclei were specially fixed and embedded in polyacrylamide to maintain both native chromosome structure and the three dimensionality of the specimens. Analysis of Rad51 in maize meiocytes revealed that when chromosomes condense during leptotene, Rad51 is diffuse within the nucleus. Rad51 foci form on the chromosomes at the beginning of zygotene and rise to approximately 500 per nucleus by mid-zygotene when chromosomes are pairing and synapsing. During chromosome pairing, we consistently found two contiguous Rad51 foci on paired chromosomes. These paired foci may identify the sites where DNA sequence homology is being compared. During pachytene, the number of Rad51 foci drops to seven to 22 per nucleus. This higher number corresponds approximately to the number of chiasmata in maize meiosis. These observations are consistent with a role for Rad51 in the homology search phase of chromosome pairing in addition to its known role in meiotic recombination.  相似文献   

20.
Agarwal S  Roeder GS 《Cell》2000,102(2):245-255
In budding yeast, absence of the meiosis-specific Zip3 protein (also known as Cst9) causes synaptonemal complex formation to be delayed and incomplete. The Zip3 protein colocalizes with Zip2 at discrete foci on meiotic chromosomes, corresponding to the sites where synapsis initiates. Observations suggest that Zip3 promotes synapsis by recruiting the Zip2 protein to chromosomes and/or stabilizing the association of Zip2 with chromosomes. Zip3 interacts with a number of gene products involved in meiotic recombination, including proteins that act at both early (Mre11, Rad51, and Rad57) and late (Msh4 and Msh5) steps in the exchange process. We speculate that Zip3 is a component of recombination nodules and serves to link the initiation of synapsis to meiotic recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号