首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dexamethasone administration to rats at a dose of 100 micrograms/100 g body weight for 10 days resulted in the appearance of large synaptic vesicles in axon terminals, migration of synaptic vesicles to synaptic slits, local broadening of synaptic slit, proliferation of mitochondria in pre- and postsynaptic zones of the axomuscular synapses, destruction of myofibrils and other organelles in the postsynaptic area and the presence of lysosomes in this region.  相似文献   

2.
The lower extrinsic protractor muscle in the buccal mass of Aplysia consists of bundles of muscle fibers 4–12 m̈ in diameter, containing thick and thin filaments that are not arranged in a transversely striated pattern. Individual fibers come close to one another and form specialized junctional regions. Electrophysiological evidence indicates that the muscle fibers form an electrical syncytium. Muscle bundles are innervated by more than one excitatory axon at a number of points along their length. The presynaptic terminals contain spherical electron-lucent vesicles and a few larger electron-dense vesicles. There are no obvious structural postsynaptic specializations. Graded contraction can result from summation of excitatory junctional potentials in separate axons or from summation and facilitation of junctional potentials from a single axon. The buildup of facilitation during a train of stimuli results from the linear summation of facilitation remaining from preceding impulses.  相似文献   

3.
We used electron microscopy to evaluate the effect of support unloading of m. soleus in adult Wistar rats (restrained in antiorthostatic position for 23–24 h/day within 24 days) on the ultrastructure of the intrafusal fibers and motor neuromuscular junctions of the muscle spindles, as well as the efficiency of intermittent hypergravity (+2GZ; 1 h/day for 19 days in a centrifuge in hypokinetic cages) as a countermeasure used in conditions of support unloading of this muscle. In the absence of support on the hind limbs, most of intrafusal fibers of m. soleus preserved the typical ultrastructure, while the axon terminals of the neuromuscular junctions accumulated a lot of synaptic vesicles (including large vesicles); the coated vesicles were absent due to unloading of the muscle and its muscle spindles (no contractions of the intrafusal fibers). A short-term effects of hypergravity at the background of support unloading of m. soleus mostly induced static loading of the muscle inducing different responses of the intrafusal fibers in different regions of the muscle spindles: local lysis of myofilaments was observed in single intrafusal fibers of the equatorial and intracapsular motor regions, while myofibrils remained intact in most fibers in the intra- and extracapsular regions of the spindles. The revealed adaptive response of the intrafusal fibers is, on the one hand, due to their specific innervation and ultrastructure and, on the other hand, to positive effect of hypergravity on the motor and extracapsular regions of the muscle spindles. Hypergravity decreased the number of synaptic vesicles and induced appearance of the coated vesicles in the axon terminals of the neuromuscular junctions of the intrafusal fibers in the animals restrained in antiorthostatic position (support unloading of m. soleus), which is due to increased functional load of the muscle. The ultrastructure of the muscle spindles adequately reflected the functional status of the postural m. soleus both during support unloading and support unloading combined with hypergravity load.  相似文献   

4.
Summary The alary muscles of Locusta migratoria adults make up the major tissue of the dorsal diaphragm which separates pericardial and perivisceral sinuses in the abdomen. The alary muscles are striated with a sarcomere at rest measuring about 9 m. The Z-line has a staggered-beaded arrangement with A-bands and I-bands readily discernable. Thick myofilaments are surrounded by 10 or more thin filaments. The sarcoplasm has few mitochondria near the area of the Z-line, dyads are present and sarcoplasmic reticulum is poorly developed. Axons which innervate the alary muscle are either contained within invaginated folds of the sarcolemma of the muscle cells or the muscle cells send finger-like projections to envelop the axons. The synaptic terminals contain synaptic vesicles between 40 and 45 nm in diameter and a few electron-dense granules near or less than 170 nm in diameter. Away from synaptic terminals the axon profiles show few or no granules. The axons are accompanied everywhere by well-developed glial cells. This then is not typical neurosecretomotor innervation, however, the presence of electron-dense granules suggests the possibility of peptidergic neurotransmission.  相似文献   

5.
Summary The structure of the myoneural junction in the striated muscle of rat embryos and postnatal rats was studied by electron microscopy in order to assess at ultrastructural level the roles of neuronal and muscular elements and the sequence of events resulting in the formation of a functionally mature synaptic organization.From the observations it is concluded that the axon terminals enveloped by Schwann cells contain vesicles prior to apposition of the prospective synaptic membranes. Subsequently, subsarcolemmal thickening of the postsynaptic membrane takes place after the synaptic gap has been formed by disappearance of the teloglial cell from between the synaptic membranes but before the primary synaptic cleft in the strict sense is formed. Secondary synaptic clefts are formed later, when the primary synaptic cleft is regular in width, by local finger-like invaginations of the postsynaptic membrane, which thereafter expand basally, in a plane transverse to the axis of the axon terminal, to resemble flattened flasks. The junction is formed between multinucleated muscle cells and multiple axons, which at first lie side by side and later, when formation of adult-type secondary synaptic clefts is in progress, become separated by folds of the sarcoplasm and the teloglia. In extraocular muscles of adult rats the sarcoplasmic reticulum is closely associated with the postjunctional sarcoplasm.In the light of earlier observations on the development of contractibility after nerve stimulation, cholinesterase histochemistry and muscle fibre physiology, these observations are interpreted to indicate that functional differentiation of the myoneural synapse results from induction by the motor axon and that the association of the sarcoplasmic reticulum with the postjunctional sarcoplasm in adult extraocular muscles is related to modified fibre physiology.The author wishes to thank Prof. Antti Telkkä, M.D., Head of the Electron Microscope Laboratory, University of Helsinki, for placing the electron microscopic facilities at his disposal.  相似文献   

6.
Summary The distribution, morphology and synaptic connections of the hindgut efferent neurons in the last (sixth) abdominal ganglion of the crayfish, Orconectes limosus, have been investigated using light and electron microscopy in conjunction with retrograde cobalt/nickel and HRP labeling through the intestinal nerve. The hindgut efferent neurons occur singly and in clusters, and are unipolar. Their axonal projections are uniform and consist of a thick primary neurite with typical lateral projections and limited arborization of varicose fibers in the ganglionic neuropil. They also send lower order axon processes to the ganglionic neural sheath, where they arborize profusely, forming a network of varicose fibers. The majority of the efferent neurons project to the anterior part of the hindgut. HRP-labeled axon profiles are found in both pre- and postsynaptic position in the neuropil of the ganglion. HRP-labeled axon profiles also establish pre- and postsynaptic contacts in the intestinal nerve root. All hindgut efferent terminals contain similar synaptic vesicle populations: ovoid agranular vesicles (50–60 nm) and a few large granular vesicles (100–200 nm). It is suggested that the hindgut efferent neurons in the last abdominal ganglion are involved in: (1) innervation of the hindgut; (2) central integrative processes; (3) en route synaptic modification of efferent and afferent signals in the intestinal nerve; (4) neurohumoral modulation of peripheral physiological processes.Fellow of the Alexander von Humboldt Stiftung  相似文献   

7.
Synaptic connections between neurons immunoreactive for arginine vasopressin (AVP) and axon terminals immunoreactive for neuropeptide Y (NPY) were found in the magnocellular part of the paraventricular nucleus (PVN) in the rat hypothalamus. In pre-embedding double immunolabeling, NPY axon terminals labeled with diaminobenzidine (DAB) reaction product established synaptic junctions on the perikarya and neuronal processes of AVP neurons labeled with silver-gold particles. Ultrastructural morphology of the neurons was more suitably preserved by a combination of pre- and post-embedding procedures. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles, and DAB chromogen (immunoreaction product) was located on the surface of the vesicular profiles and on the core. The postsynaptic AVP neurons possessed many large secretory granules labeled with gold particles. At the synaptic junctions, small clear vesicles were accumulated at the presynaptic membrane, and the postsynaptic membrane was coated with a dense accumulation of fine electron dense particles. The perikarya also received synapses made by immuno-negative axon terminals containing many small clear vesicles and a few cored vesicles. These terminals were found more frequently than those containing NPY.  相似文献   

8.
Summary Synaptic terminals of fast (FCE) and slow (SCE) excitatory neurons were physiologically identified on separate fibres of one muscle, the closer muscle in lobster claws. The innervation by these identified fibers was demonstrated over long distances (7–21 m) by examining serial thin sections at periodic intervals. The ultrastructure of each type of innervation was consistent both qualitatively and quantitatively in two separate samples. The FCE innervation is relatively simple in having consistently small-diameter terminals each forming a single long synapse, with few synaptic vesicles, and little if any postsynaptic apparatus. The SCE innervation is more complex in having larger-diameter but more variable terminals forming several short synapses, with many synaptic vesicles and an extensive postsynaptic apparatus. These differences in the size of the synapses and the number of synaptic vesicles parallel differences in transmitter release and fatigue sensitivity characteristic of the two types of innervation. The degree of elaboration of the postsynaptic apparatus may reflect differences in the amount of transmitter taken up after release. Our data reveal for the first time in a single muscle differences between FCE and SCE innervation previously reported in different muscles and in different species.Supported by grants from NIH (NINCDS) to A.G. Humes and the late Fred Lang and from NSERC and Muscular Dystrophy Assoc. of Canada to C.K. GovindWe thank Lena Hill for her technical expertise and critical evaluation of the study, and Dr. A.G. Humes for providing research facilities  相似文献   

9.
Summary In rats the fast fibular nerve was transposed to the slow soleus muscle outside the original innervation band. Formation of new neuromuscular junctions was induced by cutting the soleus nerve after different periods of time. The morphological maturation of these junctions was studied by electron microscopy.New neuromuscular junctions do not form when the original innervation is left intact.Three to five days after denervation, vesicle-laden terminal boutons contact muscle fibers with only the basal lamina of the latter intervening. Three weeks after denervation, most boutons are larger and postsynaptic folds are present, although younger stages are also seen. Sixteen weeks after denervation, the neuromuscular junctions appear mature. This corresponds well with electrophysiological findings in the same material.The fully developed neuromuscular junctions sixteen weeks after denervation possess postsynaptic folds similar to those of normal fast muscle fibers. This suggests that the fast fibular nerve rather than the slow soleus muscle fibers determines the morphology of the postsynaptic folds.Possible trophic neuromuscular interactions are discussed.The authors are indebted to Mrs. Jorunn Line Vaaland, Miss Bjørg Riber, and Miss Berit Branil for technical assistance. Dr. T. Lømo and Dr. C. Slater have contributed constructive criticism and advice  相似文献   

10.
The ultrastructure of neuromuscular junctions in the twitch fibers of the stapedius muscle of Gallus gallus (domesticus) was investigated as part of a series of neurophysiological studies. Among the morphological features observed were elongated end-plates with numerous large and clear synaptic vesicles mixed with larger dense core vesicles and irregular or aperiodic “active sites” in the presynaptic membrane where synaptic vesicles were focused. The most remarkable features of these junctions were large synaptic clefts (50-80 nm) and the absence of junctional folds in the sarcolemmal surface. Unlike the large periodic junctional folds seen in the neuromuscular junctions of frogs and in the fast twitch fibers of the mammalian stapedius, the preparations studied only show small aperiodic invaginations (primitive folds) in the postsynaptic membranes. This morphological feature remains essentially constant from newly hatched to adult chickens. While these smooth junctions are consistent with earlier findings of inconspicuous junctional folds in the twitch fibers of the chicken posterior latissimus dorsi they are unlike those seen in the fast twitch fibers of the mammalian stapedius muscle, or other twitch fibers in general. The morphological findings of the present study may also suggest that the simple, unmodified neuromuscular junctions in the stapedius of Gallus may be a useful preparation for studies of synaptic membrane structures that employ the freeze-fracture technique.  相似文献   

11.
Neuromuscular synapses of the "fast" excitatory axon supplying the main extensor muscle in the leg of the shore crab Pachygrapsus crassipes were studied with electrophysiological and electron-microscopic techniques. Electrical recording showed that many muscle fibers of the central region of the extensor muscle responded only to stimulation of the fast axon, and electron microscopy revealed many unitary subterminal axon branches. Maintained stimulation, even at a low frequency, resulted in depression of the excitatory junctional potentials (EJPs) set up by the fast axon but EJPs of different muscle fibers depressed at different rates, indicating some physiological heterogeneity among the fast-axon synapses. Focal recording at individual synaptic sites on the surfaces of the muscle fibers showed quantal contents ranging from 1.4 to 5.5 at different synapses; these values are relatively high in comparison with similar determinations made in the crayfish opener muscle. Synapse-bearing nerve terminals were generally relatively small in diameter and filiform, with many individual synaptic contact areas of uniform size averaging 0.6 micron2. All of the individual synapses had a presynaptic "dense body" at which synaptic vesicles clustered. If these structures represent release points for transmitter quanta, the initial high quantal content would have an ultrastructural basis. The mitochondial content of the nerve terminals, the synaptic vesicle population, and the specialized subsynaptic sarcoplasm were all much reduced in comparison with tonic axon synaptic regions in this and other crustaceans. The latter features may be correlated with the relatively infrequent use of this axon by the animal, and with rapid fatigue.  相似文献   

12.
Summary Synaptic connections between neurons immunoreactive for arginine vasopressin (AVP) and axon terminals immunoreactive for neuropeptide Y (NPY) were found in the magnocellular part of the paraventricular nucleus (PVN) in the rat hypothalamus. In pre-embedding double immunolabeling, NPY axon terminals labeled with diamin-obenzidine (DAB) reaction product established synaptic junctions on the perikarya and neuronal processes of AVP neurons labeled with silver-gold particles. Ultrastructural morphology of the neurons was more suitably preserved by a combination of pre- and post-embedding procedures. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles, and DAB chromogen (immunoreaction product) was located on the surface of the vesicular profiles and on the core. The postsynaptic AVP neurons possessed many large secretory granules labeled with gold particles. At the synaptic junctions, small clear vesicles were accumulated at the presynaptic membrane, and the postsynaptic membrane was coated with a dense accumulation of fine electron dense particles. The perikarya also received synapses made by immuno-negative axon terminals containing many small clear vesicles and a few cored vesicles. These terminals were found more frequently than those containing NPY.  相似文献   

13.
The lower extrinsic protractor muscle in the buccal mass of Aplysia consists of bundles of muscle fibers 4--12 mu in diameter, containing thick and thin filaments that are not arranged in a transversely striated pattern. Individual fibers come close to one another and form specialized junctional regions. Electrophysiological evidence indicates that the muscle fibers form an electrical cyncytium. Muscle bundles are innervated by more than one excitatory axon at a number of points along their length. The presynaptic terminals contain spherical electron-lucent vesicles and a few larger electron-dense vesicles. There are no obvious structural postsynaptic specializations. Graded contraction can result from summation of excitatory junctional potentials in separate axons or from summation and facilitation of junctional potentials from a single axon. The buildup of facilitation during a train of stimuli results from the linear summation of facilitation remaining from preceding impulses.  相似文献   

14.
The structure of peripheral nerves, and the organization of the myoneural junctions in flight muscle fibers of a beetle is described. The uniaxonal presynaptic nerve branches display the "tunicated" structure reported in the case of other insect nerves and the relationship between the axon and the lemnoblast folds is discussed. The synapsing nerve terminal shows many similarities with that of central and peripheral junctions of other insects and of vertebrates (e.g., the intra-axonal synaptic vesicles) but certain important differences have been noted between this region in Tenebrio flight muscle and in other insect muscles. Firstly, the axon discards the lemnoblast before the junction is established and the axon effects a circumferential synapse with the plasma membrane of the fiber, which alone shows the increased thickness often observed in both pre- and postsynaptic elements. Secondly, in addition to the synaptic vesicles within the axon are present, in the immediately adjacent sarcoplasm, great numbers of larger postsynaptic vesicles which, it is tentatively suggested, may represent the sites of storage of the enzymatic destroyer of the activating substance similarly quantized within the intra-axonal vesicles. The spatial relationship between the peripherally located junctions and the portion of the fiber plasma membrane internalized as circumtracheolar sheaths is considered, and the possible significance of this with respect to impulse conduction is discussed briefly.  相似文献   

15.
Summary In the cerebral (= supraesophageal, suprapharyngeal) ganglion of the earthworm, a number of neurosecretory Gomori-positive perikarya are bipolar; others are unipolar, or multipolar. Some of the neurosecretory cell processes project centrally into a fibrous zone; peripheral processes enter small nerves which leave the dorsocaudal aspect of the ganglion.In the central fibrous zone, the neurosecretory fibers form varicose Gomoripositive terminals. Here, also zinc-iodine-osmium (ZIO)-positive fibers and monoamine fluorescent fibers are found. With the electron microscope, nerve terminals containing synaptic vesicles and either large neurosecretory peptidergic granular vesicles (diameter more than 1500 Å), or smaller granular vesicles (diameter about 1300 Å, or 900 Å) are observed. These axon endings mainly form axo-dendritic synapses. Peptidergic profiles are both pre- and postsynaptic. Some of the extraganglionic peptidergic fibers appear to terminate around vessels, but most of them form terminals on the visceral muscle cells which surround the ganglion.We think that the central neurosecretory processes communicate with the fibers of the synaptic zone of the ganglion. The peripheral neurosecretory peptidergic fibers are supposed to form a primitive neurohemal area and/or to function as vasomotor nerves. The fibers innervating the visceral muscle cells may represent vegetative nerves.  相似文献   

16.
Summary A special type of myoneural junction has been observed in the extraocular muscles of the rat with electron microscopy. These axon terminals are derived from unmyelinated nerves and contain synaptic vesicles and mitochondria. The terminals are invested by teloglia cells and separated by a synaptic cleft of about 500 Å from a slow-type muscle fibre. From the nerve ending a pseudopod-like evagination projects into the muscle cell. The membranes of this evagination and the muscle cells are only separated by a narrow cleft of about 100 Å, which is devoid of the basement membrane-like material typical of ordinary myoneural junctions. The evagination contains fewer axonal vesicles than other regions of the terminal axoplasm and the postsynaptic part of the muscle plasma membrane in this special region does not exhibit the postsynaptic thickening characteristic of ordinary myoneural junctions.The author thanks ProfessorAntti Telkkä, M.D., Head of the Electron Microscope Laboratory, University of Helsinki, for permission to use the facilities of the laboratory.  相似文献   

17.
Summary The optic lobes of spiders contain a well differentiated synaptic region — the lame medullaire — in which the photoreceptor axon terminals synapse with the axons of the second order neurons.Each photoreceptor terminal has a very irregular outline and contains a great number of vesicles. It sends out collateral branches which end either in contact with other photoreceptor terminals or in contact with second order fibers. The second order fibers lie deeply recessed within folds of the photoreceptor terminal membrane. Frequently branches of the second order fibers can be seen as independent elements within the photoreceptor terminals. The synaptic loci are characterized by the presence of synaptic ribbons surrounded by cumuli of vesicles. These synaptic loci are always located at the intermembrane cleft between adjacent second order fibers.Synaptic structures have been found also within the second order fibers which in such cases appear as pre-synaptic elements in regard to the photoreceptor terminals.Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant Nr. 618-64.  相似文献   

18.
The synaptology of neurotensin (NT)-, somatostatin (SS)- and vasoactive intestinal polypeptide (VIP)-immunoreactive neurons was studied in the central nucleus of the rat amygdala (CNA). Three types of axon terminals formed synaptic contacts with peptide-immunoreactive neurons in the CNA: Type A terminals containing many round or oval vesicles; Type B terminals containing many pleomorphic vesicles; and Type C terminals containing fewer, pleomorphic vesicles. Peptide-immunoreactive terminals were type A. All three types of terminals formed symmetrical axosomatic and asymmetrical axodendritic contacts. However, type B and peptide-immunoreactive terminals frequently formed symmetrical axodendritic synaptic contacts. VIP-immunoreactive terminals also formed asymmetrical axodendritic contacts. SS- and NT-immunoreactive terminals commonly formed symmetrical contacts on SS- and NT-immunoreactive cell bodies, respectively. VIP-immunoreactive axon terminals were postsynaptic to nonreactive terminals. Type B terminals appeared more frequently on VIP neurons than on NT or SS neurons.  相似文献   

19.
Two types of presumed synaptic contacts have been recognized by electron microscopy in the synaptic plexus of the median ocellus of the dragonfly. The first type is characterized by an electron-opaque, button-like organelle in the presynaptic cytoplasm, surrounded by a cluster of synaptic vesicles. Two postsynaptic elements are associated with these junctions, which we have termed button synapses. The second synaptic type is characterized by a dense cluster of synaptic vesicles adjacent to the presumed presynaptic membrane. One postsynaptic element is observed at these junctions. The overwhelming majority of synapses seen in the plexus are button synapses. They are found most commonly in the receptor cell axons where they synaptically contact ocellar nerve dendrites and adjacent receptor cell axons. Button synapses are also seen in the ocellar nerve dendrites where they appear to make synapses back onto receptor axon terminals as well as onto adjacent ocellar nerve dendrites. Reciprocal and serial synaptic arrangements between receptor cell axon terminals, and between receptor cell axon terminals and ocellar nerve dendrites are occasionally seen. It is suggested that the lateral and feedback synapses in the median ocellus of the dragonfly play a role in enhancing transients in the postsynaptic responses.  相似文献   

20.
To determine the effects of nerve explants on the integrity of motor end plates in vitro, cholinesterase activity and structure of end plates were compared in newt muscle denervated in vivo, cultured in the absence of nerve explants, and cultured in the presence of sensory ganglia. In neuromuscular junctions denervated in vivo or in vitro, the synaptic vesicles become clumped and fragmented. A few intact vesicles escape into the synaptic cleft. Axon terminals degenerate until they are left as residual bodies within the Schwann cell cytoplasm. Junctional folds on the muscle surface are reduced in height and are no longer evident once traces of axoplasm within the Schwann cell disappear. End plate cholinesterase activity is reduced as junctional folds are lost. When muscle is cultured in the presence of a sensory ganglion, the terminal axoplasm degenerates in the same manner but junctional folds persist on the muscle surface. Moderately intense cholinesterase activity remains in association with the junctional folds, so that normal motor end plates are maintained in the absence of innervation. These results show that degenerative changes in the structure of the motor end plate and loss of cholinesterase activity occurring in organ culture as a result of denervation can be retarded by nerve explants that do not directly innervate the muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号