首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cryopreservation on plasma membrane and granule associated enzymes of polymorphonuclear neutrophils (PMNs) was studied. The activity of PMNs to generate superoxide anions during phagocytosis was very sensitive to cryopreservation and exhibited approximately 60% inhibition in 24 hr. The total enzyme activity was not as affected during 1-month cryopreservation as that observed with the extracellular release of enzymes. Acid p-nitrophenyl phosphatase and peroxidase were released slightly from frozen and thawed PMNs. However, the extracellular release of LDH, a cytosol marker, and β-glucuronidase and lysozyme, granuleassociated enzymes, increased with cryopreservation time. The degree of release of these enzymes was LDH > β-glucuronidase > lysozyme. A considerable amount of LDH was extracellularly released after 1-month storage. Frozen and thawed PMNs became sensitive to hypotonic solutions, although fresh, nonfrozen PMNs were very resistant to hypotonic lysis. The hypotonic fragility increased even after 1 hr of cryopreservation.Addition of ATP to the preservation medium did not improve enzyme activity, enzyme release, or stimulated superoxide anion generation but increased the hypotonic fragility of PMNs. However, albumin showed protective effects against cryopreservation injury to the O2?-generating system, the extracellular enzyme release, and osmotic fragility.  相似文献   

2.
We have devised a new method that permits the investigation of exogenous secretory vesicle function using frog oocytes and bovine chromaffin granules, the secretory vesicles from adrenal chromaffin cells. Highly purified chromaffin granule membranes were injected into Xenopus laevis oocytes. Exocytosis was detected by the appearance of dopamine-beta-hydroxylase of the chromaffin granule membrane in the oocyte plasma membrane. The appearance of dopamine-beta-hydroxylase on the oocyte surface was strongly Ca(2+)-dependent and was stimulated by coinjection of the chromaffin granule membranes with InsP3 or Ca2+/EGTA buffer (18 microM free Ca2+) or by incubation of the injected oocytes in medium containing the Ca2+ ionophore ionomycin. Similar experiments were performed with a subcellular fraction from cultured chromaffin cells enriched with [3H]norepinephrine-containing chromaffin granules. Because the release of [3H]norepinephrine was strongly correlated with the appearance of dopamine-beta-hydroxylase on the oocyte surface, it is likely that intact chromaffin granules and chromaffin granule membranes undergo exocytosis in the oocyte. Thus, the secretory vesicle membrane without normal vesicle contents is competent to undergo the sequence of events leading to exocytosis. Furthermore, the interchangeability of mammalian and amphibian components suggests substantial biochemical conservation of the regulated exocytotic pathway during the evolutionary progression from amphibians to mammals.  相似文献   

3.
Synaptic transmission is conducted by neurotransmitters released from presynaptic nerve terminals by means of Ca2+-dependent exocytosis of synaptic vesicles. Formation of a complex of soluble N-ethylmaleimide-sensitive fusion protein receptor (SNARE) proteins, including vesicle-associated membrane protein-2 (VAMP-2) in the synaptic vesicle membrane, and syntaxin 1 and synaptosomal-associated protein of 25 kDa (SNAP-25) in the plasma membrane, is essential for exocytosis. Ionomycin treatment of cultured rat cerebellar granule cells led to cleavage of SNAP-25, but not syntaxin 1 and VAMP-2, that was dependent on extracellular Ca2+. Cleavage was also induced by N-methyl-D-aspartate (NMDA) treatment, but not by depolarization. The use of various site-specific antibodies to SNAP-25, suggested that the cleavage site was in the N-terminal domain of SNAP-25. Calpain inhibitors abolished the Ca2+-dependent cleavage of SNAP-25 and markedly facilitated Ca2+-dependent glutamate (Glu) release from cerebellar granule cells. These results suggest that calpain may play an important role in the long-lasting regulation of synaptic transmission by suppressing neurotransmitter release, possibly through the proteolytic cleavage of SNAP-25.  相似文献   

4.
1. Calcium-dependent exocytosis of catecholamines from intact and digitonin-permeabilized bovine adrenal chromaffin cells was investigated. 2. 45Ca2+ uptake and secretion induced by nicotinic stimulation or depolarization in intact cells were closely correlated. The results provide strong support for Ca2+ entry being the trigger for exocytosis. 3. Experiments in which the H+ electrochemical gradient across the intracellular secretory granule (chromaffin granule) membrane was altered indicated that the gradient does not play an important role in exocytosis. 4. Ca2+ entry into the cells is associated with activation of phospholiphase C and a rapid translocation of protein kinase C to membranes. 5. The plasma membrane of chromaffin cells was rendered permeable to Ca2+, ATP, and proteins by the detergent digitonin without disruption of the intracellular secretory granules. In this system in which the intracellular milieu can be controlled, micromolar Ca2+ directly stimulated catecholamine secretion. 6. Treatment of the cells with phorbol esters and diglyceride, which activate protein kinase C, enhanced phosphorylation and subsequent Ca2+-dependent secretion in digitonin-treated cells. 7. Phorbol ester-induced secretion could be specifically inhibited by trypsin. The experiments indicate that protein kinase C modulates but is not necessary for Ca2+-dependent secretion.  相似文献   

5.
Digitonin permeabilizes the plasma membranes of bovine chromaffin cells to Ca2+, ATP, and proteins and allows micromolar Ca2+ in the medium to stimulate directly catecholamine secretion. In the present study the effects of digitonin (20 microM) on the plasma membrane and on intracellular chromaffin granules were further characterized. Cells with surface membrane labeled with [3H]galactosyl moieties retained label during incubation with digitonin. The inability of digitonin-treated cells to shrink in hyperosmotic solutions of various compositions indicated that tetrasaccharides and smaller molecules freely entered the cells. ATP stimulated [3H]norepinephrine uptake into digitonin-treated chromaffin cells fivefold. The stimulated [3H]norepinephrine uptake was inhibited by 1 microM reserpine, 30 microM NH4+, or 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The data indicate that [3H]norepinephrine was taken up into the intracellular storage granules by the ATP-induced H+ electrochemical gradient across the granule membrane. Reduction of the medium osmolality from 310 mOs to 100 mOs was required to release approximately 50% of the catecholamine from chromaffin granules with digitonin-treated chromaffin cells which indicates a similar osmotic stability to that in intact cells. Chromaffin granules in vitro lost catecholamine when the digitonin concentration was 3 microM or greater. Catecholamine released into the medium by micromolar Ca2+ from digitonin-treated chromaffin cells that had subsequently been washed free of digitonin could not be pelleted in the centrifuge and was not accompanied by release of membrane-bound dopamine-beta-hydroxylase. The studies demonstrate that 20 microM of digitonin caused profound changes in the chromaffin cell plasma membrane permeability but had little effect on intracellular chromaffin granule stability and function. It is likely that the intracellular chromaffin granules were not directly exposed to significant concentrations of digitonin. Furthermore, the data indicate that during catecholamine release induced by micromolar Ca2+, the granule membrane was retained by the cells and that catecholamine release did not result from release of intact granules into the extracellular medium.  相似文献   

6.
Ca2+-regulated exocytosis of lysosomes has been recognized recently as a ubiquitous process, important for the repair of plasma membrane wounds. Lysosomal exocytosis is regulated by synaptotagmin VII, a member of the synaptotagmin family of Ca2+-binding proteins localized on lysosomes. Here we show that Ca2+-dependent interaction of the synaptotagmin VII C(2)A domain with SNAP-23 is facilitated by syntaxin 4. Specific interactions also occurred in cell lysates between the plasma membrane t-SNAREs SNAP-23 and syntaxin 4 and the lysosomal v-SNARE TI-VAMP/VAMP7. Following cytosolic Ca2+ elevation, SDS-resistant complexes containing SNAP-23, syntaxin 4, and TI-VAMP/VAMP7 were detected on membrane fractions. Lysosomal exocytosis was inhibited by the SNARE domains of syntaxin 4 and TI-VAMP/VAMP7 and by cleavage of SNAP-23 with botulinum neurotoxin E, thereby functionally implicating these SNAREs in Ca2+-regulated exocytosis of conventional lysosomes.  相似文献   

7.
Low concentrations of phorbol 12-myristate 13-acetate (PMA) elicit a specific response in human neutrophils, characterized by the production of oxygen radicals and the release into the medium of a membrane-bound serine proteinase (Pontremoli, S., Melloni, E., Michetti, M., Sacco, O., Sparatore, B., Salamino, F., Damiani, G. and Horecker, B. L. (1986) Proc. Natl. Acad. Sci. U. S. A., 83, 1685-1689). The following evidence indicates that this response is mediated by membrane-bound protein kinase C: 1) it is blocked by inhibitors of protein kinase C; and 2) it is enhanced in cells preloaded with leupeptin which prevents proteolysis of protein kinase C and its subsequent dissociation from the cell membrane. This response is not accompanied by significant exocytosis of granule enzymes. With higher concentrations of PMA, and more particularly on stimulation with formylmethionyl-leucyl-phenylalanine (fMLP) plus cytochalasin B, a substantial exocytosis of constituents of both specific and azurophil granules is observed. With fMLP, exocytosis of granule enzymes is the predominant event, with little production of H2O2 and negligible release of membrane-bound serine proteinase. Exocytosis promoted either by a high concentration of PMA or by fMLP is inhibited by leupeptin, indicating that it is due to the action of an intracellular Ca2+-dependent thiol proteinase (calpain), either directly or by conversion by calpain of membrane-bound protein kinase C to the soluble Ca2+/phospholipid-independent form. Intracellular mobilization of Ca2+ is also observed following stimulation with either PMA or fMLP, but only the latter results in a net increase in the intracellular concentration of free Ca2+; under these conditions maximum exocytosis of granule contents is observed.  相似文献   

8.
This study investigated mechanisms by which glucose increases readily releasable secretory granules via acting on preexocytotic steps, i.e., intracellular granule movement and granule access to the plasma membrane using a pancreatic beta-cell line, MIN6. Glucose-induced activation of the movement occurred at a substimulatory concentration with regard to insulin output. Glucose activation of the movement was inhibited by pretreatment with thapsigargin plus acetylcholine to suppress intracellular Ca2+ mobilization. Inhibitors of calmodulin and myosin light chain kinase also suppressed glucose activation of the movement. Simultaneous addition of glucose with Ca2+ channel blockers or the ATP-sensitive K+ channel opener diazoxide failed to suppress the traffic activation, and addition of these substances on top of glucose stimulation resulted in a further increase. Although stimulatory glucose had minimal changes in the intracellular granule distribution, inhibition of Ca2+ influx revealed increases by glucose of the granules in the cell periphery. In contrast, high K+ depolarization decreased the peripheral granules. Glucose-induced granule margination was abolished when the protein kinase C activity was downregulated. These findings indicate that preexocytotic control of insulin release is regulated by distinct mechanisms from Ca2+ influx, which triggers insulin exocytosis. The nature of the regulation by glucose may explain a part of potentiating effects of the hexose independent of the closure of the ATP-sensitive K+ channel.  相似文献   

9.
Although cytosolic Ca2+ transients are known to influence the magnitude and duration of hormone and neurotransmitter release, the processes regulating the decay of such transients after cell stimulation are not well understood. Na(+)-dependent Ca2+ efflux across the secretory vesicle membrane, following its incorporation into the plasma membrane, may play a significant role in Ca2+ efflux after stimulation of secretion. We have measured an enhanced 45Ca2+ efflux from cultured bovine adrenal chromaffin cells following cell stimulation with depolarizing medium (75 mM K+) or nicotine (10 microM). Such stimulation also causes Ca2+ uptake via voltage-gated Ca2+ channels and secretion of catecholamines. Na+ replacement with any of several substitutes (N-methyl-glucamine, Li+, choline, or sucrose) during cell stimulation inhibited the enhanced 45Ca2+ efflux, indicating and Na(+)-dependent Ca2+ efflux process. Na+ deprivation did not inhibit 45Ca2+ uptake or catecholamine secretion evoked by elevated K+. Suppression of exocytotic incorporation of secretory vesicle membranes into the plasma membrane with hypertonic medium (620 mOsm) or by lowering temperature to 12 degrees C inhibited K(+)-stimulated 45Ca2+ efflux in Na(+)-containing medium but did not inhibit the stimulated 45Ca2+ uptake. Enhancement of exocytotic secretion with pertussis toxin resulted in an enhanced 45Ca2+ efflux without affecting calcium uptake. The combined results suggest that Na(+)-dependent Ca2+ efflux across secretory vesicle membranes, following their incorporation into the plasma membrane during exocytosis, plays a significant role in regulating calcium efflux and the decay of cytosolic Ca2+ in adrenal chromaffin cells and possibly in related secretory cells.  相似文献   

10.
Digitonin-Permeabilized Cells Are Exocytosis Competent   总被引:6,自引:3,他引:3  
Release of norepinephrine from PC12 cells can be stimulated by free Ca2+ in micromolar concentrations after permeabilization with 10 micrograms/ml of digitonin. This release is time and temperature dependent, half-maximal at 0.3 microM Ca2+, and, after washing out of endogenous ATP, half-maximal at about 0.5 mM MgATP when exogenously added. Similar results were obtained with bovine adrenal chromaffin cells using the same protocol. Support for the idea that the mechanism of release from both permeabilized cell types is still exocytosis is demonstrated at the electron microscopic level by immunolabeling chromaffin granule membrane antigens that were introduced into the plasma membrane following stimulation. Electron micrographs furthermore demonstrate that chromaffin granules retain typical dense cores after permeabilization, indicating that leakiness of catecholamines from the granules was not a major factor. Pores, formed by digitonin in the plasma membranes, were utilized to introduce antibodies into such exocytosis-competent cells. Anti-actin and anti-chromaffin granule membrane antibodies show a staining pattern similar to conventionally fixed and stained preparations. Our results demonstrate that pores formed by digitonin do not impair the process of exocytosis although they are big enough to allow macromolecules to pass in both directions. The digitonin-permeabilized cell is therefore an ideal in vitro system with which to study the fusion process between chromaffin granules and the plasma membrane.  相似文献   

11.
The possible involvement of chemiosmotic lysis of secretory granules in the exocytosis of insulin from pancreatic beta cells was investigated by comparing insulin release from isolated secretory granules, from intact islets of Langerhans, and from electrically permeabilised islets. Lysis of isolated granules was stimulated by ATP in the presence of Mg2+. ATP-induced granule lysis was pH and temperature dependent and was inhibited by collapsing the pH gradient across the granule membrane by removal of permeant anions, or by increasing the extragranular osmolarity. However, insulin secretion from intact islets in response to glucose, a phosphodiesterase inhibitor or a Ca2+ ionophore was only partially inhibited by anion replacement, while Ca2+ -induced insulin release from electrically permeabilised islets was not affected by altering the extragranular or intragranular pH. These results suggest that studies of the stability of isolated granules in vitro do not necessarily relate to insulin release from whole cells, and do not support a major role for chemiosmotic lysis of secretory granules in the exocytotic release of insulin.  相似文献   

12.
Protamine induces a gradual change in plasma membrane permeability in rabbit neutrophils, which is evident from the increase of indol fluorescence, and the leakage of quin2 from quin2-loaded neutrophils. The influx of extracellular Ca2+ into the neutrophil provides an explanation for exocytosis which occurs in the presence of Ca2+ and protamine. The dependence of exocytosis on Ca2+ concentration follows the same pattern as is observed in neutrophils permeabilized by other means. In the absence of Ca2+, and in the presence of protamine, La3+ has an activating effect on exocytosis. At higher concentrations La3+ inhibits exocytosis that occurs in the presence of Ca2+ and protamine, as do some other metal ions. The resemblance between the membrane effects of a number of toxins, as reported in literature, and protamine-induced membrane damage suggests that they occur via the same mechanism.  相似文献   

13.
《The Journal of cell biology》1989,109(6):2801-2808
The molecular details of the final step in the process of regulated exocytosis, the fusion of the membrane of the secretory granule with the plasma membrane, are at present obscure. As a first step in an investigation of this membrane fusion event, we have developed a cell- free assay for the interaction between pancreatic zymogen granules and plasma membranes. We show here that plasma membranes are able to trigger the release of the granule contents, and that this effect is specific to pancreatic membranes, involves membrane fusion, requires membrane proteins, and is stimulated by activators of G-proteins but not by Ca2+. The assay is simple, reliable, and rapid, and should permit the identification of proteins that are involved in the exocytotic fusion event.  相似文献   

14.
In sea urchin eggs fertilization is accompanied by cortical granule exocytosis, a secretory event thought to be initiated by release of intracellularly sequestered calcium. We have examined the effect of two drugs on this process: chlortetracycline (CTC), a known chelator of intracellular calcium, and 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), an antagonist of intracellular calcium release in both skeletal and smooth muscle. Preincubation of eggs for 10 min with either CTC or TMB-8 blocked sperm entry, inhibited the burst of 45Ca2+ efflux normally seen postinsemination, and prevented fertilization envelope elevation. Half-maximal inhibition occurred with 200 microM CTC and 60 microM TMB-8. Electron microscopy confirmed that cortical granule exocytosis had been blocked, although inhibition was not due to a direct effect on exocytosis. CTC and TMB-8 had no effect on Ca2+-stimulated granule fusion in isolated egg cortices. Rather, these drugs block the early events in egg activation: sperm incorporation and triggering of exocytosis. These two effects appear to be independent since addition of either drug just before insemination permits sperm entry but inhibits calcium release and cortical granule exocytosis.  相似文献   

15.
By exploiting the unique characteristics of three ionophores, experimental conditions were found which permit the dissociation of respiratory stimulation from secretion in polymorphonuclear leucocytes. A marked stimulation of respiration was produced by ionophore X537A, which binds and transports both alkali-earth and alkali cations. The stimulatory activity of this ionophore was the same at either high or low Na+/K+ ratios in the medium and was virtually unaffected by extracellular Ca2+. A slight stimulation of oxygen consumption was also caused by the K+-selective ionophore valinomycin and by ionophore A23187, which complexes and transfers bivalent cations. Ionophore X537A and valinomycin were unable to stimulate selective release of granuleassociated beta-glucuronidase and gradually increased cell fragility, as monitored by increased leakage of lactate dehydrogenase. Ionophore A23187 slightly increased exocytosis of beta-glucuronidase. In a Mg2+-free medium, Ca2+, added simultaneously with ionophore A23187, greatly enhanced respiration and secretion of the granule enzyme. If Ca2+ was added a few minutes after the ionophore, exocytosis occurred, but no respiratory burst was observed. If the latter experiment was repeated in the presence of extracellular Mg2+, both secretion and respiration were stimulated. This effect was not produced by Mn2+ or Ba2+. It is proposed that Ca2+ is required for triggering selective secretion of granule enzymes from leucocytes is caused by an intracellular redistribution of cations, which may invovle Mg2+-dependent mechanisms.  相似文献   

16.
High hydrostatic pressure applied between sperm attachment and the onset of cortical granule exocytosis will inhibit this exocytotic event in sea urchin eggs. Such pressure-treated zygotes, nevertheless, are activated and capable of development. Thus, this technique can be used as a tool to study the relationship between cortical granule breakdown and other fertilization-related responses. We have studied whether the exocytosis of cortical granules is necessary for proton efflux (acid release) to occur. Our results indicate that although Ca2+ is released while the eggs are under pressure (a prerequisite for the following events to take place), cortical granule exocytosis and acid release are pressure-sensitive and completely inhibited at pressures above 400 atm (6000 psi) and 275 atm (4000 psi), respectively. However, upon decompression, acid release is initiated which amounts to 65–70% of that seen in the unpressurized controls, suggesting that the efflux mechanism does not require cortical granule exocytosis and must result from some modification of the original plasma membrane of the egg. The remaining 30–35% of the acid release is related to cortical granule exocytosis, since it can be obtained upon induction of the cortical granule fusion 30 min later under atmospheric pressure. The initiation of acid release after decompression indicates that the efflux mechanism is not transiently turned on at fertilization, but undergoing long-term modification; the recovery of the ability to induce cortical granule fusion after fertilization under pressure suggests a refilling of cytoplasmic Ca2+ stores within this time course.  相似文献   

17.
The membrane-permeabilizing effects of streptolysin O, staphylococcal alpha-toxin, and digitonin on cultured rat pheochromocytoma cells were studied. All three agents perturbed the plasma membrane, causing release of intracellular 86Rb+ and uptake of trypan blue. In addition, streptolysin O and digitonin also damaged the membranes of secretory vesicles, including a parallel release of dopamine. In contrast, the effects of alpha-toxin appeared to be strictly confined to the plasma membrane, and no dopamine release was observed with this agent. The exocytotic machinery, however, remained intact and could be triggered by subsequent introduction of micromolar concentrations of Ca2+ into the medium. Dopamine release was entirely Ca2+ specific and occurred independent of the presence or absence of other cations or anions including K+ glutamate, K+ acetate, or Na+ chloride. Ca2+-induced exocytosis did not require the presence of Mg2+-ATP in the medium. The process was insensitive to pH alterations in the range pH 6.6-7.2, and appeared optimal at an osmolarity of 300 mosm/kg. Toxin permeabilization seems to be an excellent method for studying the minimal requirements for exocytosis.  相似文献   

18.
Exposure at 37 degrees C of rat serosal mast cells (RSMC) to chymase, an endogenous secretory granule serine protease, results in exocytosis as determined by the release of another secretory granule enzyme, beta-hexosaminidase. Chymase-mediated RSMC degranulation does not occur at 1 degree C; however, exposure of RSMC to chymase at 1 degree C followed by the removal of buffer and the resuspension of the cells in buffer alone at 37 degrees C results in exocytosis equivalent to that obtained by direct exposure of RSMC to chymase at 37 degrees C. Maximal chymase-mediated RSMC degranulation at 37 degrees C is Ca2+-dependent and Mg2+-independent. The dose-dependent degranulation-inducing interaction of chymase and alpha-chymotrypsin with RSMC at 1 degree C is Ca2+-independent, whereas subsequent exocytosis at 37 degrees C in new buffer without added enzyme still requires Ca2+. Specific binding of 125I-labeled alpha-chymotrypsin to RSMC does not occur at 1 degree C, implying that the inducing action of chymase is not a simple ligand-receptor binding. The enzyme inhibitors diisopropyl fluorophosphate and lima bean trypsin inhibitor inhibit subsequent exocytosis at 37 degrees C only if they are added within the first 10 min of the interaction of RSMC and chymase at 1 degree C, implying that an active site-dependent inducing event occurs between RSMC and chymase at 1 degree C. Thus, chymase-induced coupled activation-secretion can be divided into a cation- and temperature-independent initiation phase, which is dependent on the active site of exogenously added chymase and a subsequent temperature-dependent and calcium-augmented cellular secretion phase.  相似文献   

19.
Addition of Staphylococcus aureus alpha-toxin to adult bovine chromaffin cells maintained in primary culture causes permeabilization of cell membrane as shown by the release of intracellular 86Rb+. The alpha-toxin does not provoke a spontaneous release of either catecholamines or chromogranin A, a protein marker of the secretory granule, showing the integrity of the secretory vesicle membrane. However the addition of micromolar free Ca2+ concentration induced the co-release of noradrenaline and chromogranin A. In alpha-toxin-treated cells, the released chromogranin A could not be sedimented and lactate dehydrogenase was still associated within cells, which provides direct evidence that secretory product is liberated by exocytosis. By contrast, permeabilization of cells with digitonin caused a Ca2+-dependent but also a Ca2+-independent release of secretory product, a dramatic loss of lactate dehydrogenase, as well as release of secretory product in a sedimentable form. Ca2+-dependent exocytosis from alpha-toxin-permeabilized cells required Mg2+-ATP and did not occur in the presence of other nucleotides. Thus alpha-toxin is a convenient tool to permeabilize chromaffin cells, and has the advantage of keeping intracellular structures, specifically the exocytotic machinery, intact.  相似文献   

20.
Kato N  Nakanishi M  Hirashima N 《Biochemistry》2003,42(40):11808-11814
The effects of cholesterol depletion from the plasma membrane with methyl-beta-cyclodextrin (MbetaCD) on exocytotic processes were investigated in rat basophil leukemia cells (RBL-2H3 cells). Pretreatment of the cells with MbetaCD inhibited antigen-evoked exocytotic release dose-dependently. To elucidate the mechanism of this inhibition, we performed experiments on the effects of MbetaCD on exocytotic membrane fusion and mobilization of Ca(2+) and on the localization of the tyrosine kinase Lyn. Inhibition of degranulation by MbetaCD was observed even under stimulation with the phorbol ester and calcium ionophore. Therefore, MbetaCD affected a process downstream of Ca(2+) influx, or membrane fusion between the granule and the plasma membrane. Intracellular calcium measurements revealed that MbetaCD inhibited the Ca(2+) increase induced by antigen. Furthermore, we found that MbetaCD significantly inhibited Ca(2+) influx from the extracellular medium through the store-operated calcium channel (SOC) but did not affect Ca(2+) release from the intracellular Ca(2+) store. Fluorescent image analysis of cells expressing Lyn-YFP showed that treatment with MbetaCD scarcely affected the localization and lateral mobility of Lyn in the plasma membrane. These results suggest that cholesterol depletion by MbetaCD decreases degranulation mainly by inhibiting the SOC and membrane fusion between the secretory granules and the plasma membrane in mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号