首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dose- and time-response effects of 3 days of 6 h day-time sequential exposures to NO2, SO2 and SO2+NO2 of 0.45–1.81 μl l−1 (ppm) SO2 and 1.50–7.65 μl l−1 NO2 on photosynthesis, transpiration and dark respiration were examined for nine Carpatho-Ukrainian half-sib families and a population from the GFR ('Westerhof') of Norway spruce [ Piecea abies (L.) Karst.], all in their 5th growing season.
SO2+NO2 inhibited photosynthesis and transpiration and stimulated dark respiration more than SO2 alone. SO2 and SO2+NO2 at the lowest concentrations inhibited night transpiration, but increased it at the highest concentration, the strongest effects being obtained with combined exposures. Photosynthesis of the different half-sib families was affected significantly differently by SO2+NO2 exposures. NO2 alone had no effects.
Sensitivity to transpiration decline correlated negatively with branch density. Height of trees correlated postitively with decline sensitivity in the seed orchard. The distribution of photosynthesis and transpiration sensitivities over all tested half-sib families correlated negatively with the distribution of decline sensitivity of their parents in a rural Danish seed orchard. The relative photosynthesis and transpiration sensitivities may thus serve as diagnostic parameters for selecting against novel spruce decline.  相似文献   

2.
Abstract. The effect of short-term SO2 fumigation on photosynthesis and transpiration of Vicia faba L. was measured at different irradiances and SO2 concentrations. At high irradiances photosynthetic rates were reduced when leaves were exposed to SO2 and the magnitude of the reduction was linearly related to the rate of SO2 uptake through the stomata. Photosynthetic rates stabilized within 2 h after the start of fumigation.
The effect of SO2 on photosynthesis was measured at different CO2 concentrations to analyse the contribution of stomatal and non-stomatal factors to photosynthetic inhibition. Mesophyll resistance to CO2 diffusion increased as a result of SO2 exposure and caused a rapid reduction in photosynthesis after the start of fumigation. Stomatal resistance was not affected directly by SO2 fumigation, but indirectly as a result of a feedback loop between net photosynthesis and internal CO2 concentration.
Analysis of gas-exchange measurements in biochemical terms indicated that photosynthetic inhibition during SO2 exposure can be explained by a stronger reduction in the affinity of RBP carboxylase/oxygenase for CO2 than for O2.  相似文献   

3.
HAWKSWORTH, D. L. & McMANUS, P. M., 1989. Lichen recolonization in London under conditions of rapidly falling sulphur dioxide levels, and the concept of zone skipping. The lichen flora on trees and wood at 50 sites in north-west London was examined in 1988 to determine what changes had taken place since 1980, a period when mean winter SO2 levels had fallen from around 130 μg m-3 to within the range 29–55 μg m-3 in the study area. Forty-nine species were found. The fruticose lichens Evernia prunaslri and Ramalina farinacea now occur in many central London parks, and the yellow green foliose Parmelia caperata was discovered at 12 sites (previously only at one, Ruislip, in 1980). Comparable numbers and growth forms of species occurred throughout the area. An assemblage of zone 4–5 species (Hawksworth & Rose, 1970 Nature, 227: 145–148) tolerant of mean winter SO2 levels of 60–70 μg m-3 failed to penetrate central London, although more sensitive species of zones 6 and 7 had; this phenomenon, which has not previously been reported, is referred to as 'zone skipping' and is attributed to the speed at which mean sulphur dioxide levels in London have fallen. Species returning are those to be expected on the basis of previously-published field correlations with mean winter SO2 levels. Twenty-five species not seen within 16 km of the centre of London on trees or wood during this century were found; of these, eight had not been seen during the last 200 years.  相似文献   

4.
The effect of SO2 on the extractable activity of ATP sulfurylase (EC 2.7.7.4.). adenosine 5'-phosphosulfate sulfotransferase, ribulosebisphosphate carboxylase, chlorophyll, protein, sulfate, and amino acids was examined in leaves of potted grafts of beech ( Fagus sylvatica L.) treated in outdoor fumigation chambers. Addition of 0.025 and 0.075 μl SO2 1−1 to unfiltered ambient air caused a decrease in the extractable activity of adenosine 5'-phosphosulfate sulfotransferase to about 20 to 30% of the controls. Neither the extractable activity of ATP sulfurylase and ribulosebisphosphate carboxylase nor the content in chlorophyll, total amino acids and protein were significantly affected by SO2, but there was an increase in the sulfate content. Leaves treated with 0.075 μl SO2 1−1 contained more alanine and cysteine and less serine than the controls. After transfer of the SO2-treated beech trees to control chambers there was an increase in adenosine 5'-phosphosulfate sulfotransferase activity, but no significant decrease in SO2−4-sulfur.  相似文献   

5.
Abstract Newly developed low capacity columns were used in suppressed ion chromatography for rapid and highly reproducible determination of SO42− in porewater samples from freshwater sediments without preconcentration of samples. With a 50 μl injection the detection limit for SO42− was ca. 50 pmol (= 1 μ M) with a precision of 1–3% at the 10–200 μM level and <1% at concentrations above 200 μM. SO42− could be measured in 4–5 min with the routinely used eluent (3.0 mM NaHCO3/0.8 mM Na2CO3). When the strength of the eluent was increased to 3.0 mM NaHCO3/2.0 mM Na2CO3, sulfate analysis was possible in less than 3 min, provided that samples were nitrate-free. Under these conditions S2O32− could also be sensitively determined in about 6 min. Examples of application of the method are given for measurements of sulfate reduction rates in freshwater sediment samples from Lake Constance.  相似文献   

6.
The immission-response effect of five low levels of sulfur dioxide on net photosynthesis and transpiration was studied during continuous measurements in near-complete life cycles of whole bean plants ( Phaseolus vulgaris L. cv. Processer) grown in a controlled environment. Sixteen plants were grown in individual water cultures in each of five 100 1 glass assimilation chambers with a new type of exposure system with separate root aeration. SO2 immission ranged from 10 μg m−3 to 950 μg m−3 during 12-h day-time exposure periods, five days a week, while a low, natural background of NOx was accepted.
The SO2-induced photosynthetic reductions were in the short term, but in particular on the long-term level very closely related with stomatal conductance (significance level better than 0.0005). However, a causal coherence was not inferred. Physiological inhibitions were composed of: (1) A reversible component (night and week-end recovery) and (2) an irreversible component (related to reduced green leaf area). The pattern of leaf growth was studied, with the conclusion that SO2 reduced leaf area by promoting senescence, rather than by interfering with leaf emergence and development.  相似文献   

7.
Abstract. A field study was conducted to determine the relationship of solar-excited chlorophyll a fluorescence to net CO2 assimilation rate in attached leaves. The Fraunhofer line-depth principle was used to measure fluorescence at 656.3 nm wavelength while leaves remained exposed to full sunlight and normal atmospheric pressures of CO2 and O2. Fluorescence induction kinetics were observed when leaves were exposed to sunlight after 10 min in darkness. Subsequently, fluorescence varied inversely with assimilation rate. In the C4 Zea mays , fluorescence decreased from 2.5 to 0.8 mW m-2 nm-1 as CO2 assimilation rate increased from 1 to 8 μmol m-2 s-1 (r2= 0.520). In the C3 Liquidambar styraciflua and Pinus taeda , fluorescence decreased from 6 to 2 mW m-2 nm-1 as assimilation rate increased from 2 to 5 or 0 to 2 μmol m-2 s-1 (r2= 0.44 and 0.45. respectively). The Fraunhofer line-depth principle enables the simultaneous measurement of solar-excited fluorescence and CO2 assimilation rate in individual leaves, but also at larger scales. Thus, it may contribute significantly to field studies of the relationship of fluorescence to photosynthesis.  相似文献   

8.
The effects of light and temperature on cell size and cellular composition (chlorophyll, protein, carbohydrate) of two freshwater cryptophytes were studied with batch cultures. Neither of the species had a constant cell size but the size varied with growth conditions. At each temperature the smallest cells were recorded at the lowest experimental photon flux density. The smallest cells of Cryptomonas 979/67 had an average volume of 232 μm3 and the largest ones 1 020 μm3. In Cryptomonas 979/62 the smallest and largest cells measured 4 306 μm3 and 12 450 μm3. Both species increased their cellular chlorophyll content when PFB dropped below 110–120 μmol m-2 s-1. The highest and lowest chlorophyll contents of 979/67 were 7.45 fg μm-3 and 0.55 fg μm-2 respectively. For 979/62 the corresponding values were 10.23 fg μm-3 and 0.93 fg μm-3. In both species the protein content remained stable at PFDs higher than 110–120 μmol m-2 S-1. The highest content of protein measured in 979/67 was 638 fg μm-3 and the lowest 147 fg μm-3. For 979/62 these values were 1 036 fg μm-3 and 148 fg μm-3 respectively. The carbohydrate results were less clear and no pattern either in response to photon flux density or temperature was obvious. The lowest and highest contents recorded for 979/67 were 62 fg μm-3 and 409 fg μ-3 and for 979162, 36 fg μm-3 and 329 fg μm-3  相似文献   

9.
Shoots of cold-acclimated seedlings of Pinus sylvestris L. were exposed to a temperature of –7°C for 4 h, in darkness or at a photon flux density of 1 300 μmol m-2s-1. Before and after freezing, fluorescence kinetics of intact needles and isolated chloroplast membranes were measured at both room temperature and 77 K. Maximum and variable fluorescence yield of photosystem II both at room temperature and 77 K decreased strongly after freezing in light, whereas the initial fluorescence yield was little affected. Quenching of maximum and variable fluorescence of photosystem I at 77 K also occurred. The results show that freezing in light damages photosystem II, thereby increasing the radiationless decay at the reaction centres of photosystem II. This is a typical symptom of photoinhibition of photosynthesis. Freezing in darkness did not significantly reduce fluorescence yield of photosystem II or photosystem I. Moreover, electron transport capacity was not significantly affected. We therefore suggest that the inhibition of the CO2 assimilation in pine seedlings by freezing alone does not involve thylakoid inactivation.  相似文献   

10.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

11.
Abstract. A model is developed for photosynthesis and photorespiration in C3 plants, using an equation for the multisubslrate ordered reaction of ribulose 1,5-bisphosphalc carboxylase-oxygenase (Farazdaghi & Edwards, 1988). The model examines net CO2 fixation with O2 inhibition, and mutual inhibition when equilibrium exists between carboxylation and oxygenation (at the CO2 compensation point). It is based on the stoichiometry of energy requirements and O2, and CO2 exchange in the cycles, the quantum efficiency for RuBP generation, the maximum capacity for RuBP generation, the carboxylation efficiency with respect to [CO2], and the oxygenation efficiency with respect to [O2]. With increasing concentrations of CO2 above the CO2 compensation point, decreasing quantum flux density, or decreasing O2, simulations show that the rate of photorespiration progressively decreases. The two components of O2 inhibition of photosynthesis change disproportionately with increasing CO2 concentration. According to the model, the energy utilized during photosynthesis at the CO2 compensation point is about half that under atmospheric conditions.  相似文献   

12.
The floating angiosperm Lemna gibba L. was exposed for 2 h to various combinations of photosynthetic photon flux densities and temperature. The extent of photoinhibition of photosynthesis was assayed by measuring the net CO2 uptake before and after a photoinhibitory treatment, and the time course for photoinhibition was studied. It was found that the maximum quantum yield and the light-saturated rate of CO2 uptake were affected by the interaction between light and temperature during the photoinhibitory treatment. At a constant photon flux density of 650 μmol m−2 s−1 the extent of photoinhibition increased with decreasing temperature showing that even a chilling-resistant plant like L. gibba is much more susceptible to photoinhibition at chilling temperatures. About 60% photoinhibition of the quantum yield for CO2 uptake could be obtained either by a high photon flux density of 1 750 μmol m−2 s−1 and 25°C or by a moderate photon flux density of 650 μmol m−2 s−1 and 3°C. The time courses of recovery from 60% photoinhibition produced by either of these two treatments were similar, indicating that the nature of the photoinhibition was intrinsically similar. The extent of photoinhibition was related to the amount of light absorbed in excess to what could be handled by photosynthesis at that temperature. The vital importance of photosynthesis in alleviating photoinhibition is discussed.  相似文献   

13.
Ribulose bisphosphate carboxylase-oxygenase, RuBP carboxylase (EC 4.1.1.39), was purified from non-hardened and hardened needles of Pinus sylvestris L. Needles were collected from pine seedlings cultivated in nutrient solution in a climate chamber from seedlings grown outdoors, and from a tree in a natural stand. The enzyme was isolated from crude extracts through quantitative precipitation in polyethylene glycol 4000 and MgCl2, followed by sucrose gradient centrifugation in a fixed angle rotor. The purified enzyme seemed homogeneous by the criterion of (sodium dodecylsulphate) polyacrylamide gel electrophoresis. Contamination by nucleic acids was negligible. The RuBP carboxylase protein content of the gradient fractions was estimated as A2801 cm× 0.61 mg ml−1. Carboxylase activities were determined in a radioactive assay at 25°C. The specific activity of RuBP carboxylase isolated from non-hardened needles was approximately 1 μmol CO2 (mg protein)−1 min−1. For enzyme isolated from hardened needles collected during winter the specific activity was somewhat lower due to loss of enzyme activity during the preparation. The described two-step procedure provides a means for quantitation of the RuBP carboxylase protein in pine needles during all seasons.  相似文献   

14.
Abstract Thiobacillus versutus responds to both CO2-limitation and increase in chemostat dilution rate under thiosulphate-limitation by increasing ribulose bisphosphate carboxylase specific activity. It has no high affinity CO2-concentrating mechanism like that shown in Synechococcus , and may depend on diffusional uptake of CO2/HCO3.  相似文献   

15.
The long-term role of photorespiration was investigated by comparing growth, development, gas exchange characteristics and mineral nutrition of a wheat crop ( Triticum aestivum L. cv. Courtot) cultivated in a culture chamber during a life cycle, either in 4% O2 or in normal O2 Low O2 pressure reduced photorespiration, but CO2 was controlled so that net photosynthesis remained the same as in the control crop. The growth and development of the low O2 crop was slowed down. Ear appearance was 16 days late, but the rate of tillering was the same as in the control and was maintained longer so that the final number of tillers was doubled. Pigment, ribulose bisphosphate carboxylase (EC 4.1.1.39) and soluble sugar contents were similar. The response of photosynthesis to CO2 and O2 was not appreciably changed by the low O2 treatment. There was almost no seed formation, and the senescence of the leaves was delayed. It appears that in non-stress conditions most of the photorespiration can be suppressed without damage to the photosynthetic apparatus. Retardation of development and inhibition of reproduction are likely due to other effects of O2.  相似文献   

16.
The effect of long-term water stress on photosynthetic carbon metabolism in Casuarina equisetifolia Forst. & Forst. was analysed by measuring CO2 assimilation, stomatal conductance, the quantum yield of photosystem II ( Φ PSII), enzyme activities, and the levels of photosynthetic intermediates and carbohydrates. CO2 assimilation decreased under water stress while the intercellular CO2 concentration ( C i) as estimated by gas exchange measurements remained high. However, the estimates of C i from measurements of Φ PSII suggest that the decrease in photosynthesis can be explained in terms of stomatal closure. Water stress decreased total stromal fructose-1,6-bisphosphatase activity and did not alter the activities and activation states of ribulose bisphosphate carboxylase oxygenase and NADP-dependent malate dehydrogenase (NADP-MDH). The concentration of photosynthetic metabolites, glucose, fructose and sucrose decreased, whereas starch concentrations increased under drought conditions.  相似文献   

17.
Abstract. Two nonallelic, nuclear recessive mutants of Arabidopsis thaliana (L.) Heynh. which become chlorotic when grown in an atmosphere enriched to 20000 cm3 CO2 m-3 have been isolated. For one of the mutants, chlorosis begins at the veins and gradually spreads to the interveinal regions. A minimum photon flux density of ca 50 μmol m-2 s-1 is required for this response. For the other mutant, the yellowing is independent of the light intensity and begins at the basal regions of the leaves and spreads to the tips. The injurious effects of CO2 seem to be restricted to photosynthetic tissues, since root elongation and callus growth were not inhibited by a high atmospheric CO2 concentration for either mutant. Neither mutant became chlorotic in a low O2 atmosphere that suppressed photorespiration as effectively as the elevated CO2 does. Thus, the mutations do not impose a requirement for photorespiration. The possibilities that the high CO2-sensitive phenotypes are caused by an effect of CO2 in stomata, on ethylene synthesis, or on mineral uptake are discussed but are considered unlikely.  相似文献   

18.
The effects of photon flux density and temperature on net photosynthesis and transpiration rates of mature and immature leaves of three-year-old Japanese larch Larix kaempferi (Lamb.) Sarg. trees were determined with an infrared, differential open gas analysis system. Net photosynthetic response to increasing photon flux densities was similar for different foliage positions and stage of maturity. Light compensation was between 25 and 50 μmol m−2 s−1. Rates of photosynthesis increased rapidly at photon flux densities above the compensation level and became saturated between 800 and 1000 μmol m−2 s−1. Transpiration rates at constant temperature likewise increased with increasing photon flux density, and leveled off between 800 and 1000 μmol m−2 s−1. Photosynthetic response to temperature was determined in saturating light and was similar for all foliage positions; it increased steadily from low temperatures to an optimum range betweeen 15 and 21°C and then decreased rapidly above 21°C. Transpiration rate, however, increased continuously with rising temperature up to the experimental maximum. CO2 compensation concentrations for mature foliage varied between 58 and 59 μl l−1; however, foliage borne at the apex of the terminal leader compensated at 75 μl l−1. None of these data support the claim that Japanese larch possesses C4 photosynthetic characteristics.  相似文献   

19.
The effect of fruit removal on gas exchange, water relations, chlorophyll and non-structural carbohydrate content of leaves from mature, field-grown plum trees ( Prunus domestica L. cv. Stanley) was determined over 2 consecutive growing seasons. Removal of fruits during stage II of fruit development decreased CO2 assimilation rate within 24 h from 12.6 to 8.5 μmol m-2 s-1 in 1986, and from 12.1 to 10.2 μmol m-2 s-1 in 1987. Depression of net photosynthesis persisted for at least 5 days and was greatest in the early afternoon. Recovery of the CO2 assimilation rate to pretreatment levels coincided in defruited trees with vegetative growth that was more than 5-fold that of fruiting trees in the first 6 weeks after fruit removal in 1986. Estimated photorespiration was similar in both fruiting and defruited trees. The stomatal contribution to the decrease of CO2 assimilation rate, calculated from assimilation/intercellular CO2 curves, ranged from 31 to 46%. Defruiting did not affect leaf water potential, but decreased leaf osmotic potential. Leaf levels of chlorophyll, fructose, glucose, sorbitol and sucrose were not affected by defruiting, whereas starch content increased up to 51% in leaves of defruited trees within 24 h after fruit removal. However, because of the small starch pool present in plum leaves (<1.9% dry weight) it is unlikely that starch accumulation was responsible for the observed decline in CO2 assimilation rate after fruit removal. The decrease of CO2 assimilation rate is discussed in relation to the hypothesis of assimilate demand regulating photosynthesis through a feedback mechanism.  相似文献   

20.
When willow leaves were transferred from 270 to 650 μmol m-2 s-1 photosynthetic photon flux density (PPFD), partial photoinhibition developed over the next hours. This was manifested as roughly parallel inhibitions of the ratio of variable over maximal chlorophyll fluorescence (Fv/FM), and of the maximal quantum yield and the capacity of photosynthesis. This occurred even though photosynthesis was operating well below its capacity and only about one fourth of the reaction centres of photosystem (PS) II were in the closed state. When the air temperature was lowered from 25 to 15°C (18°C leaf temperature) photoinhibition was markedly accelerated. This temperature effect is suggested to be mediated largely by a decrease in the rate of energy dissipation through photosynthesis and indicated by a 50% increase in the number of closed PSII reaction centres. The pool size of the carotcnoid zeaxanthin and the extent of inhibition of the Fv/FM ratio were positively correlated during the treatment. However, the relaxation following imposition of darkness was much faster for zeaxanthin than for the Fv/FM ratio, ruling out the possibility of a direct causal relationship. The energy distribution between PSII and PSI was unaltered upon photoinhibition. However, the functioning of the PSII reaction centres was altered, as indicated by a rise in the minimal fluorescence, Fa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号