首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of thiamine on neuromuscular transmission in the frog sartorius muscle was investigated. It was found that thiamine at a concentration of 1×10–14 to 1×10–4 M increases transmitter secretion at the nerve endings. This is demonstrated by the increased frequency, amplitude, and quantal content of miniature endplate potentials, and is due to the enhanced likelihood of transmitter release. The role of thiamine in regulating synaptic transmission and the mechanism of its interaction with thiamine-sensitive receptors are examined.A. V. Palladin Institute of Biochemistry, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 794–800, November–December, 1985.  相似文献   

2.
A technique is proposed for quantifying the effects of physiologically active substances at the periphery of the auditory analyzer. It was found that applying 1×10–11 to 1×10–3 M thiamine to the membrane of guinea pig cochlear round window (fenestra rotunda) produces a rise in the amplitude and a reduction in the latency of the N1 and N2 components of auditory nerve action potentials, waves I and II of brainstem auditory evoked potentials occurring in response to an acoustic stimulus. It is suggested that this effect is produced by facilitated synaptic transmission at synapses between hair cells and spiral ganglia neurons under the action of thiamine penetrating into the cochlea.A. V. Palladin Institute of Biochemistry, Academy of Sciences of the Ukrainian SSR, Kiev. A. I. Kolomiichenko Research Institute of Otolaryngology, Ministry of Public Health of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 654–660, September–October, 1986.  相似文献   

3.
Summary The ionic requirements for the action potentials recorded from the axon of the dorsal longitudinal stretch receptor inCarausius morosus have been studied using extracellular electrodes.In the intact preparation prolonged exposure to sodium-free, calcium-free, or magnesium-free salines produces no observable change in the amplitude of action potentials. Similarly, tetrodotoxin (1×10–6 M) and cobaltous chloride (1×10–2 M) are both ineffective in blocking the action potentials.In preparations in which the ionic barrier has been disrupted by removal of the nerve sheath the action potentials show sodium dependence. They are sustained in high sodium salines (150 mM) but are reversibly abolished in sodium-free salines. They are also reversibly abolished in 1×10–6 M TTX, but unaffected by calcium-free or magnesium-free salines, or by cobaltous chloride (1×10–2 M).It is concluded that the action currents in the axon of the stretch receptor are carried by sodium ions.  相似文献   

4.
That thiamine has a role in nerve conduction as well as synaptic transmission is suggested by the following observations. (1) Thiamine phosphate esters are hydrolyzed and released from nerve membranes during nerve conduction. (2) Ultraviolet radiation of single nerve fibers at the wavelength specific for thiamine destroys the ability of that nerve to conduct an impulse. (3) Thiamine diphosphatase (TDPase) is present on synaptosomes. Previous articles have characterized an alkaline active TDPase in brain; this report characterizes a pH 5 active TDPase and compares its properties to the pH 9 enzyme. Both enzymes require a divalent cation for optimal activity. The pH 5 enzyme is more sensitive to ATP. Myelin fractions of brain have the highest specific activity for the acid TDPase, and the nerve ending particles the highest total activity. No PO4 3– inhibition was observed. Kinetic constants of this enzyme activity are reported.  相似文献   

5.
We have studied the effect of substance P on the end-plate currents (EPC) and the miniature EPC (MEPC) after acetylcholine esterase (ACE) inhibition in the cut neuromuscular preparation of the frog sartorius muscle using the voltage-clamp technique. At concentrations of 5·10–7–1·10–6 moles/liter substance P had no effect on the amplitude and the time characteristics of single EPC and MEPC but promoted prolongation of EPC decay on repetitive stimulation of the nerve with a frequency of 10/sec, indicating intensification of postsynaptic potentiation. Elevation of the concentration of the given peptide to 5·10–6 moles/liter led to the shortening of the decay of single EPC and a more marked depression of the EPC amplitude in the trains as compared to the control, reflecting a decrease in the sensitivity of the postsynaptic membrane to the mediator, i.e., development of desensitization.S. V. Kurashov State Medical Institute, Kazan. I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Leningrad. Translated from Neirofiziologiya, Vol. 23, No. 4, pp. 436–441, July–August, 1991.  相似文献   

6.
The effects of 1·10–5–1·10–3 M dopamine on background and evoked interneuronal-activity was investigated during experiments on a spinal cord segment isolated from 11–18-day old infnat rats. Dopamine induced an increase in background firing activity rate in 52.5% and a reduced rate in 42.5% of the total sample of responding cells. Dopamine exerted a primarily inhibitory effect on interneuronal activity invoked by dorsal root stimulation, as witnessed by the reduced amplitude of the postsynaptic component of field potentials in the dorsal horn together with the fact that invoked activity was depressed in 66.7% of total interneurons responding to dopamine and facilitated in only 33.3% of these cells. All dopamine-induced effects were reversible and dose-dependent. Dopamine-induced effects disappeared after superfusing the brain with a solution containing 0–0.1 mM Ca2+ and 2 mM Mn2+, suggesting that this response is of transsynaptic origin. In other cells the excitatory or inhibitory action of dopamine also persisted in a medium blocking synaptic transmission; this would indicate the possibility of dopamine exerting depolarizing and hyperpolarizing effects on the interneuron membrane directly. Contrasting responses to dopamine in interneurons may be attributed to the presence of different types of dopamine receptors in the spinal cord.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 7–16, January–February, 1989.  相似文献   

7.
The resting membrane potential of fibers of the rat diaphragm was measured by a microelectrode technique 3 h after division of the phrenic nerve and incubation in culture medium for 5 days after denervation. The membrane potential was recorded in synaptic regions of fibers close to (2–3 mm) and distant from (9–11 mm) the site of nerve division. The membrane potential of the synaptic region of the close fibers 3 h after denervation became smaller, whereas that of the synaptic region of distant fibers did not change relative to the control. Placing the muscle 3 h after denervation into medium with carbamylcholine (1·10–8 M), cGMP (1·10–4 M), or dibutyryl-cGMP (1·10–6 M) led to hyperpolarization of the synaptic region of the close fibers but did not change the resting potential in the synaptic region of the distant fibers, and abolished differences between them. Five days after division of the nerve, incubation of the muscle in a solution with the above-mentioned substances did not affect the resting membrane potential. Nonquantal release of acetylcholine from motor nerve endings, assessed by the amplitude of hyperpolarization of the postsynaptic membrane, induced by application of curarine against the background of acetylcholine esterase inhibition, 3 h after denervation was identical in the synaptic region of the close and distant fibers and did not differ from the control. It is postulated that the postdenervation fall of membrane potential of rat muscle fibers is not due to disturbance of nonquantal secretion of acetylcholine from motor nerve endings.S. V. Kurashov Kazan' Medical Institute, Ministry of Health of the USSR. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 358–365, May–June, 1985.  相似文献   

8.
It was found during experiments on isolated frog spinal cord involving extracellular recording from the dorsal roots (sucrose bridging) and intracellular recording from motoneurons by microelectrodes that 10 mM of the M-cholinomimetic arecoline produces motoneuronal depolarization which is matched by depolarizing electronic ventral root potentials and a rise in motoneuronal input resistance. Arecoline changes synaptic transmission by increasing the amplitude of postsynaptic potentials during intracellular recording and that of motoneuronal reflex discharges in the ventral roots but reduces the duration of dorsal root potentials. In the presence of arecoline, L-glutamate-induced motoneuronal response increases. Facilitation of synaptic transmission produced by arecoline in the spinal cord is bound up with cholinergic M2- activation, since it is suppressed by atropine but not by low concentrations of pirenzipine; it is also coupled with a reduction in adenylcyclase activity. When motoneuronal postsynaptic response has been suppressed, as in the case of surplus calcium or theophylline, arecoline produces an inhibitory effect on the amplitude of motoneuronal monosynaptic reflex discharges which is suppressed by pirenzipine at a concentration of 1×10–7 M. This would indicate the presence at the primary afferent terminals of presynaptic cholinergic M1 receptors which mediate its inhibition of impulses of transmitter release. This effect is independent of changes in cyclic nucleotide concentration.A. M. Gorkii Medical Institute, Donetsk. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 399–405, May–June, 1987.  相似文献   

9.
The effect of penicillin on the membrane potential (MP) and synaptic activity of motoneurons in the isolated spinal cord of the river lamprey was investigated. In cells with a low initial MP (58.7±5.2 mV, n=28), penicillin (2.5 mmole·liter–1) caused a depolarization, and potentiated excitatory postsynaptic potentials (EPSPs) that were evoked by stimulating spinal tracts and dorsal roots. The EPSPs were potentiated by 80–220% relative to their initial amplitude. In motoneurons with a higher MP (72.0±5.7 mV, n=20), a depolarization did not develop, and the potentiation of EPSPs did not exceed 25–70%. The effects of penicillin were inhibited when antagonists of excitatory and inhibitory amino acids were added to the superfusate. The results obtained imply that the motoneuron membranes have two acceptor sites for penicillin.Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg Institute of Biological Research, Belgrade, Yugoslavia. Translated from Neirofiziologiya, Vol. 24, No. 2, pp. 151–160, March–April, 1992.  相似文献   

10.
The character of dorsal horn motoneurons and interneurons evoked by stimulation of the dorsal root, and activity of Renshaw cells in response to stimulation of the ventral root were studied in albino rats in the lower lumbar segments of the spinal cord 5 days after sciatic nerve division. A significant increase in the mean amplitude of excitatory postsynaptic potentials of motoneurons was observed on the side of division of the nerve. No significant change in membrane potential and in the threshold of appearance of the action potential of these motoneurons took place. The mean number of action potentials and the duration of discharge of the Renshaw cells and dorsal horn interneurons likewise were not significantly changed.Dnepropetrovsk Medical Institute, Ukrainian Ministry of Health. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 306–314, May–June, 1992.  相似文献   

11.
Summary In conventional two microelectrode experiments, acetylcholine had qualitatively the same effect as GABA and glutamate on membrane potential and input resistance of muscle fibres of the opener and intrinsic stomach muscles of crayfish (Austropotamobius torrentium). In patch-clamp experiments, acetylcholine occasionally elicited single channel openings in cell-attached patches on these muscles. If outside-out patches were excised and the Cl concentration was high on both sides of the membrane, acetylcholine at concentrations of 1 nM regularly elicited single channel currents. The amplitude of single channel currents depended strongly on the intracellular concentration of Cl. The reversal potential of the channel, determined after replacing intracellular K+ with Cs+, corresponded to the Nernst potential for Cl. The voltage dependence and the reversal potential of single channel current amplitudes elicited by ACh, glutamate and GABA were identical. The distribution of life times of openings (>1 ms) elicited by ACh and glutamate could be fitted by a single exponential with a time constant of about 2.5 ms, corresponding to the mean open time. ACh and glutamate applied to the same outside-out patch showed cross-desensitization, and thus ACh and glutamate activate the same channels. An excitatory, cationic ACh-activated channel could not be identified. Permeabilities of the chloride channel were calculated according to the Goldman-Hodgkin-Katz equation at different membrane potentials. Negative single channel current amplitudes (inward currents) could be fitted with a permeability of 2= 3.9×10–14 cm3s–1. For positive currents (outward) the channel had a permeability of 1= 1.4× 10–14 cm3s–1. The permeability of the channel declined from 16×10–14 cm3s–1 to 2.3×10–14 cm3s–1 if the intracellular Cl-concentration was raised from 6 to 257 mM. The activation elicited by acetylcholine was inhibited by extracellular Ca++. The mean current activated by ACh was reduced by a factor of 50 if the extracellular concentration of Ca++ was raised from 0.1 mM to the physiological concentration of 13.5 mM.  相似文献   

12.
The effects of prostaglandin E2 (PGE2) and indomethacin on excitatory neuro-effector transmission in the human bronchus were investigated by tension recording and microelectrode methods. PGE2 (10−10–10−9M) suppressed the amplitude of twitch contractions and excitatory junction potentials (e.j.ps) evoked by field stimulation at a steady level of basal tension obtained by the combined application of indomethacin (10−5M) and FPL55712 (10−6M). In doses over 10−8M, PGE2 reduced the muscle tone and dose-dependently suppressed the amplitude of twitch contractions. Indomethacin (10−5 or 5 × 10−5M) reduced the muscle tone and enhanced the amplitude of twitch contractions and e.j.ps evoked by field stimulation in the presence of FPL55712. PGE2 (10−9M) had no effect on the post-junctional response of smooth muscle cells to exogenously applied acetylcholine (ACh) (4 × 10−7M). However, indomethacin (10−5M) significantly enhanced the ACh-induced contraction of the human bronchus. These results indicate that PGE2 in low concentrations has a pre-junctional action to inhibit excitatory neuro-effector transmission in addition to a post-junctional action, presumably by suppressing transmitter release from the vagus nerve terminals in the human bronchial tissues.  相似文献   

13.
The effect of bile salts, saponin, and Tween-80 on miniature end-plate potentials and electrotonic potentials of frog muscle fibers was studied. During the action of bile salts in a concentration of 10–4 g/ml the frequency of the synaptic potentials rose sharply. Their amplitude also increased. The input resistance of the muscle fiber decreased during the action of these substances. With an increase in their concentration to 10–3 g/ml bile salts caused an initial increase in frequency of the spontaneous synaptic potentials followed by their depression and complete disappearance. Tween-80 caused no appreciable change in synaptic activity, whereas saponin inhibited it. Lowering the external calcium ion concentration by two to eight times had no influence on the stimulating effect of bile salts, but the total removal of calcium reduced it. The substances tested stimulated secretion of acetylcholine from the nerve endings, probably through changes caused in the structure of the presynaptic membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 305–310, May–June, 1976.  相似文献   

14.
Thiamine antimetabolites were externally applied to voltage clamped squid giant axons to investigate the possible role of thiamine in nerve conduction. Phenylthiazinothiamine, in concentrations as low as 250 m̈M, reduced peak early current and steady-state current, with the depression of the former being two to five times greater than that of the latter. Peak transient and steady-state conductances were about equally depressed by thiamine tert-butyl disulfide (2 mM) and L-586944-00P07 (5–10 mM). None of the antimetabolites produced an appreciable change in the kinetics of Na+ activation, K+ activation, or Na+ inactivation. Thiamine itself, applied externally up to 30 mM, had no appreciable effect on either the magnitude or time course of the ionic currents. Although these data are consistent with the hypothesis that thiamine may be involved in nerve conduction, they probably reflect a nonspecific stabilizing interaction of this class of compound with the axon membrane. Taken in this light, the hypothesis that thiamine plays a direct role in Na+ channel permeability changes must be reevaluated.  相似文献   

15.
The effects of quinine on the peak amplitude and the decay of calcium currents (ICa) were investigated in nonidentified neurons isolated fromHelix pomatia. A concentration of 1×10–5–5×10–4 M quinine was found to produce a reversible dose-dependent deceleration in the decline of ICa ("lead" effect) and a reversible, slowly evolving dose-dependent reduction in ICa amplitude ("lag" effect). A reduction in amplitude down to half control level is observed at a quinine concentration of 6 ×10–5 M, while the current-voltage relationship of ICa shifts by 5–10 mV towards negative potentials. Results show that quinine successfully blocks calcium channels inHelix pomatia neurons.Institute of Brain Research, All-Union Mental Health Research Center, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 413–417, May–June, 1987.  相似文献   

16.
The action of the toxin BgTX8 separated from the sea actiniaBunodosoma granolifera on transient tetrodotoxin-sensitive sodium and outward potassium currents of units isolated from rat sensory ganglia was investigated using techniques of voltage clamping at the membrane and intracellular perfusion. It was found that BgTX8 decelerates the inactivation kinetics but has little effect on activation kinetics of sodium current. At the same time, a 5–10% increase in the amplitude of inward current was often observed at holding potentials of about –100 to –120 mV at the membrane. The dissociation constant of the receptor-toxin equals 4×10–6 M and is adequately described by Langmuir's isotherm. It was also established that intracellular perfusion of neurons with anemone toxin-containing solution leads to a reduction in the amplitude of sodium current and decelerates its inactivation process. Suppression of outward potassium current was also noted.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Brain Research, Academy of Sciences, Havana, Cuba. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 32–37, January–February, 1988.  相似文献   

17.
Summary Excitatory postsynaptic currents (EPSCs) produced by stimulating either the fast or slow motor axon to the bodywall muscles of larval sheepfly, are reduced by 60% in the presence of 2 × 10–4 M L-glutamate. L-aspartate at 2 × 10–4 M is without effect on either the fast or slow EPSC. Extracellularly recorded slow EPSCs are also reduced by iontophoresis of L-glutamate onto the active site. Iontophoresis of L-aspartate has no effect on the slow EPSC. These results are discussed in relation to a possible transmitter role for glutamate and aspartate at fast and slow excitatory neuromuscular synapses of the bodywall muscles of larval sheepfly.Abbreviation EPSC excitatory postsynaptic current The author is indebted to Professor P.N.R. Usherwood for use of facilities and for helpful discussion during the course of this work. The author is supported by the S.R.C.  相似文献   

18.
Summary 1. The effects of heavy metals (Pb2+, Hg2+, and Zn2+) on synaptic transmission in the identified neural network ofHelix pomatia L. andLymnaea stagnalis L. (Gastropoda, Mollusca) were studied, with investigation of effects on inputs and outputs as wells as on interneuronal connections.2. The sensory input running from the cardiorenal system to the central nervous system and the synaptic connections between central neurons were affected by heavy metals.3. Lead and mercury (10–5–10–3 M) eliminated first the inhibitory, then the excitatory inputs running from the heart to central neurons. At the onset of action lead increased the amplitude of the excitatory postsynaptic potentials, but blockade of sensory information transfer occurred after 10–20 min of treatment.4. The monosynaptic connections between identified interneurons were inhibited by lead and mercury but not by zinc. Motoneurons were found to be less sensitive to heavy metal treatment than interneurons or sensory pathways.5. The treatment with Pb2+ and Hg2+ often elicited pacemaker and bursting-type firing in central neurons, accompanied by disconnection of synaptic pathways, manifested by insensitivity to sensory synaptic influences.6. Zn2+ treatment also sometimes induced pacemaker activity and burst firing but did not cause disconnection of the synaptic transmission between interneurons.7. A network analysis of heavy metal effects can be a useful tool in understanding the connection between their cellular and their behavioral modulatory influences.  相似文献   

19.
Techniques of intracellular dialysis and neuronal perfusion in the visceral ganglion ofLymnaea stagnalis used during voltage-clamping at the neuronal membrane helped to ascertain that a concentration of 1×10–16–1×10–6 M neuroactive peptides (vasopressin, oxytocin, and vasotocin) alter the amplitude of electrically-operated transmembrane ionic currents considerably without affecting the kinetics of current activation and inactivation and surface potential at the membrane. The experimental conditions applying made it possible to record incoming sodium and calcium currents separated from each other as well as outward delayed and transient potassium currents. It was found that electrically-operated cerebral currents could either increase or decline in amplitude under the effects of peptides applied at different concentrations to the membrane of the same unit. Receptors of the peptides investigated in this study are thought to be located within the structure of electrically-operated channels at the neuronal membrane.A. I. Gertsen Teaching Institute, Leningrad. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 526–533, July–August, 1990.  相似文献   

20.
The effect of vitamin B1 (thiamine, 10–10–10–3 M) on direct (transmitter secretion) and recurrent (resynthesis of the transmitter and its storage in synaptic vesicles) processes of acetylcholine (ACh) secretion was studied in the frog neuromuscular junction. In Ca2+-containing extracellular medium, the facilitatory effects of thiamine and -latrotoxin (an increase in the frequency of miniature end-plate potentials, MEPP) were additive, regardless of the sequence of their application. After partial exhaustion of the synaptic vesicle stores caused by -latrotoxin (2 nM) in Ca2+-free extracellular medium, thiamine accelerated the Ca2+-induced recovery of the ACh secretion. In the presence of thiamine, there were two phases in the dependence of quantum content of an end-plate potential (EPP) on stimulation frequency, which are typical of the effects of Sr2+ and Ba2+ on the ACh secretion. Under conditions of depression and postdepression recovery, the effect of thiamine on the time course of the changes in EPP amplitude was similar to that produced by Ba2+. Possible mechanisms of the effects of vitamin B1 on the processes responsible for the ACh secretion and the dependence of the MEPP frequency on the concentrations of thiamine and thiamine diphosphate are discussed in light of the above results.Neirofiziologiya/Neurophysiology, Vol. 26, No. 4, pp. 291–298, July–August, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号