首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AM真菌DNA的提取与PCR-DGGE分析   总被引:22,自引:0,他引:22  
分别从丛枝菌根(AM)真菌的单孢、宿主植物根系及土壤样品中提取DNA,对AM真菌的18SrDNA中NS31/Glol区进行Nested PCR特异性扩增,表明Nested PCR能很好地以微量DNA为模板扩增出目标产物;对扩增产物进行DGGE电泳,3种样品表现出不同的DGGE指纹图谱特征。本文认为,将Nested PCR与DGGE技术相结合,可以成为AM真菌分子生态学研究的有效途径。  相似文献   

2.
Plant can be infected by different arbuscular mycorrhizal fungi, but little is known about the interaction between them within root tissues mainly because different species cannot be distinguished on the basis of fungal structure. Accurate species identification of Arbuscular mycorrhizal fungi (AMF) colonized in plant roots is the comerstone of mycorrhizal study, yet this fundamental step is impossible through its morphological character alone. For accurate, rapid and inexpensive detection of partial mycorrhizal fungal community in plant roots, a nested multiplex polymerase chain reaction (PCR) was developed in this study. Five discriminating primers designed based on the variable region of the 5′ end of the large ribosomal subunit were used in the experiment for testing their specificity and the sensitivity in nested PCR by using spores from Glomus mosseae (BEG12), Glomus intraradices (BEG141), Scutellospora castaneae (BEG1) and two unidentified Glomus sp. HAUO3 and HAUO4. The feasibility assay of nested multiplex PCR was conducted by use of spore mixture, Astragalus sinicum roots co-inoculated with 4 species of arbuscular mycorrhizal fungi from pot cultures and 15 different field-growing plant roots respectively after analyses of the compatibility of primers. The result indicated that the sensitivity was in the same range as that of the corresponding single PCR reaction. Overall accuracy was 95%. The efficiency and sensitivity of this multiplex PCR procedure provided a rapid and easy way to simultaneously detect several of arbuscular mycorrhizal fungal species in a same plant root system.  相似文献   

3.
Plant can be infected by different arbuscular mycorrhizal fungi, but little is known about the interaction between them within root tissues mainly because different species cannot be distinguished on the basis of fungal structure. Accurate species identification of Arbuscular mycorrhizal fungi (AMF) colonized in plant roots is the comerstone of mycorrhizal study, yet this fundamental step is impossible through its morphological character alone. For accurate, rapid and inexpensive detection of partial mycorrhizal fungal community in plant roots, a nested multiplex polymerase chain reaction (PCR) was developed in this study. Five discriminating primers designed based on the variable region of the 5′ end of the large ribosomal subunit were used in the experiment for testing their specificity and the sensitivity in nested PCR by using spores from Glomus mosseae (BEG12), Glomus intraradices (BEG141), Scutellospora castaneae (BEG1) and two unidentified Glomus sp. HAUO3 and HAUO4. The feasibility assay of nested multiplex PCR was conducted by use of spore mixture, Astragalus sinicum roots co-inoculated with 4 species of arbuscular mycorrhizal fungi from pot cultures and 15 different field-growing plant roots respectively after analyses of the compatibility of primers. The result indicated that the sensitivity was in the same range as that of the corresponding single PCR reaction. Overall accuracy was 95%. The efficiency and sensitivity of this multiplex PCR procedure provided a rapid and easy way to simultaneously detect several of arbuscular mycorrhizal fungal species in a same plant root system.  相似文献   

4.
A nested-PCR temporal temperature gradient gel electrophoresis (TTGE) approach was developed for the detection of bacteria belonging to phylogenetic cluster I of the genus Clostridium (the largest clostridial group, which represents 25% of the currently cultured clostridial species) in cheese suspected of late blowing. Primers were designed based on the 16S rRNA gene sequence, and the specificity was confirmed in PCRs performed with DNAs from cluster I and non-cluster I species as the templates. TTGE profiles of the PCR products, comprising the V5-V6 region of the 16S rRNA gene, allowed us to distinguish the majority of cluster I species. PCR-TTGE was applied to analyze commercial cheeses with defects. All cheeses gave a signal after nested PCR, and on the basis of band comigration with TTGE profiles of reference strains, all the bands could be assigned to a clostridial species. The direct identification of Clostridium spp. was confirmed by sequencing of excised bands. C. tyrobutyricum and C. beijerinckii contaminated 15 and 14 of the 20 cheese samples tested, respectively, and C. butyricum and C. sporogenes were detected in one cheese sample. Most-probable-number counts and volatile fatty acid were determined for comparison purposes. Results obtained were in agreement, but only two species, C. tyrobutyricum and C. sporogenes, could be isolated by the plating method. In all cheeses with a high amount of butyric acid (>100 mg/100 g), the presence of C. tyrobutyricum DNA was confirmed by PCR-TTGE, suggesting the involvement of this species in butyric acid fermentation. These results demonstrated the efficacy of the PCR-TTGE method to identify Clostridium in cheeses. The sensitivity of the method was estimated to be 100 CFU/g.  相似文献   

5.
Numerous microorganisms, including bacteria, yeasts, and molds, are present in cheeses, forming a complex ecosystem. Among these organisms, bacteria are responsible for most of the physicochemical and aromatic transformations that are intrinsic to the cheesemaking process. Identification of the bacteria that constitute the cheese ecosystem is essential for understanding their individual contributions to cheese production. We used temporal temperature gradient gel electrophoresis (TTGE) to identify different bacterial species present in several dairy products, including members of the genera Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Pediococcus, Streptococcus, and STAPHYLOCOCCUS: The TTGE technique is based on electrophoretic separation of 16S ribosomal DNA (rDNA) fragments by using a temperature gradient. It was optimized to reveal differences in the 16S rDNA V3 regions of bacteria with low-G+C-content genomes. Using multiple control strains, we first set up a species database in which each species (or group of species) was characterized by a specific TTGE fingerprint. TTGE was then applied to controlled dairy ecosystems with defined compositions, including liquid (starter), semisolid (home-made fermented milk), and solid (miniature cheese models) matrices. Finally, the potential of TTGE to describe the bacterial microflora of unknown ecosystems was tested with various commercial dairy products. Subspecies, species, or groups of species of lactic acid bacteria were distinguished in dairy samples. In conclusion, TTGE was shown to distinguish bacterial species in vitro, as well as in both liquid and solid dairy products.  相似文献   

6.
In this study, we have analyzed and compared the diversities of the arbuscular mycorrhizal fungi (AMF) colonizing the roots of five annual herbaceous species (Hieracium vulgare, Stipa capensis, Anagallis arvensis, Carduus tenuiflorus, and Avena barbata) and a perennial herbaceous species (Brachypodium retusum). Our goal was to determine the differences in the communities of the AMF among these six plant species belonging to different families, using B. retusum as a reference. The AMF small-subunit rRNA genes (SSU) were subjected to nested PCR, cloning, sequencing, and phylogenetic analysis. Thirty-six AMF phylotypes, belonging to Glomus group A, Glomus group B, Diversispora, Paraglomus, and Ambispora, were identified. Five sequence groups identified in this study clustered to known glomalean species or isolates: group Glomus G27 to Glomus intraradices, group Glomus G19 to Glomus iranicum, group Glomus G10 to Glomus mosseae, group Glomus G1 to Glomus lamellosum/etunicatum/luteum, and group Ambispora 1 to Ambispora fennica. The six plant species studied hosted different AMF communities. A certain trend of AMF specificity was observed when grouping plant species by taxonomic families, highlighting the importance of protecting and even promoting the native annual vegetation in order to maintain the biodiversity and productivity of these extreme ecosystems.  相似文献   

7.
Enterobacteriaceae are frequently isolated from food products and it is essential to have methods for correct identification for both food hygiene and epidemiology reasons. Phenotypic methods are not always sufficient and have to be supplemented by DNA based methods. In the present study, 70 strains of Enterobacteriaceae derived from milk, fish and meat that had previously been identified by Biolog GN Microplates were genomically classified together with 15 representative type strains of species of Enterobacteriaceae. The field strains were dominated by Hafnia alvei, Serratia liquefaciens and Rahnella aquatilis. All strains were subjected to temporal temperature gel electrophoresis (TTGE) analysis using amplicons encompassing the V3, V4 and V9 variable regions of the 16S rRNA gene. Selected strains were analysed by ribotyping and partial 16S rDNA sequencing. The type strains were differentiated into 10 different TTGE groups. Two of the groups contained two type strains. Enterobacter aerogenes and Klebsiella planticola were not distinguished due to their identical sequences and Yersinia ruckeri and Citrobacter freundii showed the same migration pattern. The 70 food strains could be differentiated into 14 TTGE groups where 33 strains (47.1%) could be assigned to TTGE groups including type or reference strains. Rahnella strains were dispersed into three TTGE groups of which one group corresponded to Rahnella genomospecies 1 and one to genomospecies 3. The grouping of Rahnella strains was supported by ribotyping and phylogenetic analysis. TTGE can be a useful additional tool for identification on the species level of food related Enterobacteriaceae.  相似文献   

8.
A nested-PCR temporal temperature gradient gel electrophoresis (TTGE) approach was developed for the detection of bacteria belonging to phylogenetic cluster I of the genus Clostridium (the largest clostridial group, which represents 25% of the currently cultured clostridial species) in cheese suspected of late blowing. Primers were designed based on the 16S rRNA gene sequence, and the specificity was confirmed in PCRs performed with DNAs from cluster I and non-cluster I species as the templates. TTGE profiles of the PCR products, comprising the V5-V6 region of the 16S rRNA gene, allowed us to distinguish the majority of cluster I species. PCR-TTGE was applied to analyze commercial cheeses with defects. All cheeses gave a signal after nested PCR, and on the basis of band comigration with TTGE profiles of reference strains, all the bands could be assigned to a clostridial species. The direct identification of Clostridium spp. was confirmed by sequencing of excised bands. C. tyrobutyricum and C. beijerinckii contaminated 15 and 14 of the 20 cheese samples tested, respectively, and C. butyricum and C. sporogenes were detected in one cheese sample. Most-probable-number counts and volatile fatty acid were determined for comparison purposes. Results obtained were in agreement, but only two species, C. tyrobutyricum and C. sporogenes, could be isolated by the plating method. In all cheeses with a high amount of butyric acid (>100 mg/100 g), the presence of C. tyrobutyricum DNA was confirmed by PCR-TTGE, suggesting the involvement of this species in butyric acid fermentation. These results demonstrated the efficacy of the PCR-TTGE method to identify Clostridium in cheeses. The sensitivity of the method was estimated to be 100 CFU/g.  相似文献   

9.
Numerous microorganisms, including bacteria, yeasts, and molds, are present in cheeses, forming a complex ecosystem. Among these organisms, bacteria are responsible for most of the physicochemical and aromatic transformations that are intrinsic to the cheesemaking process. Identification of the bacteria that constitute the cheese ecosystem is essential for understanding their individual contributions to cheese production. We used temporal temperature gradient gel electrophoresis (TTGE) to identify different bacterial species present in several dairy products, including members of the genera Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Pediococcus, Streptococcus, and Staphylococcus. The TTGE technique is based on electrophoretic separation of 16S ribosomal DNA (rDNA) fragments by using a temperature gradient. It was optimized to reveal differences in the 16S rDNA V3 regions of bacteria with low-G+C-content genomes. Using multiple control strains, we first set up a species database in which each species (or group of species) was characterized by a specific TTGE fingerprint. TTGE was then applied to controlled dairy ecosystems with defined compositions, including liquid (starter), semisolid (home-made fermented milk), and solid (miniature cheese models) matrices. Finally, the potential of TTGE to describe the bacterial microflora of unknown ecosystems was tested with various commercial dairy products. Subspecies, species, or groups of species of lactic acid bacteria were distinguished in dairy samples. In conclusion, TTGE was shown to distinguish bacterial species in vitro, as well as in both liquid and solid dairy products.  相似文献   

10.
垃圾填埋场中厌氧真菌18SrDNA的PCR扩增及鉴定   总被引:17,自引:0,他引:17  
采用机械破壁法直接从来自7个不同地区的垃圾填埋场滤液样本中提取真菌DNA,应用真菌通用引物NS1和NS8扩增18SrDNA(约1800bp),多聚酶链式反应(PCR)产物的琼脂糖凝胶电泳结果表明所有的样本均得到了扩增;以PCR产物作为模板,采用厌氧真菌Chytridiomycetes科的专用引物Chyt-719和Chyt-1553进行二次PCR扩增(约857bp),该阳性扩增产物克隆和测序结果首次表明在食草动物瘤胃中存在的厌氧真菌Chytridiomycetes也存在于垃圾填埋场中,且为Neocallimastix属。  相似文献   

11.
A unique oligonucleotide pair, GOCC56:GOCC427, was designed that correctly primed specific amplification of a approximately 370-bp sequence spanning the ITS and 5.8S rDNA regions of Glomus occultum and Glomus brasilianum. In addition, this primer pair successfully detected G. occultum and G. brasilianum DNA in nested PCR using a primary PCR product amplified from highly diluted extracts of colonized corn (Zea mays) roots using modified ITS1:ITS4 primers. A second primer pair, GBRAS86:GBRAS388, primed specific amplification of a approximately 200-bp sequence spanning the ITS and 5.8S rDNA regions present only in G. brasilianum and Glomus strain GR582. Combined use of both primer pairs provides the means to detect and differentiate two ancient endomycorrhizal species, G. occultum and G. brasilianum, undetectable by standard root staining procedures. Sequence analysis showed that the purported G. occultum strain GR582 is likely a strain of G. brasilianum.  相似文献   

12.
Multiple co-dominant genetic markers from single spores of the arbuscular mycorrhizal (AM) fungi Glomus mosseae, Glomus caledonium, and Glomus geosporum were amplified by nested multiplex PCR using a combination of primers for simultaneous amplification of five loci in one PCR. Subsequently, each marker was amplified separately in nested PCR using specific primers. Polymorphic loci within the three putative single copy genes GmFOX2, GmTOR2, and GmGIN1 were characterized by sequencing and single strand conformation polymorphisms (SSCP). Primers specific for the LSU rDNA D2 region were included in the multiplex PCR to ensure correct identification of the Glomus spp. spores. Single AM fungal spores were characterized as multilocus genotypes by combining alleles of each amplified locus. Only one copy of each putative single copy gene could be amplified from each spore, indicating that spores are homokaryotic. All isolates of G. mosseae had unique genotypes. The amplification of multiple co-dominant genetic markers from single spores by the nested multiplex PCR approach provides an important tool for future studies of AM fungi population genetics and evolution.  相似文献   

13.
于永光  赵斌 《微生物学报》2008,27(2):209-216
设计在不同pH水平(4.3、5.1、5.8、6.8)下两种VA菌根真菌Glomus mosseae和Gigaspora margarita对紫云英Astragalus sinicus进行单接种、混合接种及无接种对照的盆栽实验。对紫云英地上和地下部分生物量、根部侵染率、SDH和ALP酶活进行了检测。实验结果表明:紫云英的生长效应与VA菌根真菌的侵染率及两种酶活成明显相关性。土壤pH升高,单接种Glomus mosseae和混合接种的侵染率也随之升高,而单接种Gigaspora margarita的侵染率呈现  相似文献   

14.
AIMS: This work was carried out in order to evaluate the microbial diversity of whey cultures collected from different Grana Padano cheese plants in Veneto region (north-east Italy) by means of RAPD-PCR and Temporal Temperature Gradient Gel Electrophoresis (TTGE) analysis. METHODS AND RESULTS: Lactobacillus helveticus was the dominant species among isolated thermophilic lactobacilli. RAPD-PCR with primers M13 and D8635 resulted a suitable method for typing Lact. helveticus at strain level. Thirteen different Lact. helveticus biotypes were detected in the seven whey cultures studied with one biotype present in all the whey cultures. Besides Lact. helveticus, Lact. delbrueckii subsp. lactis was the main microbial species detected by TTGE. CONCLUSIONS: RAPD-PCR resulted very useful in studying Lact. helveticus biodiversity; furthermore, TTGE analysis allowed to detect the dominant thermophilic microflora characteristic of Grana Padano cheese whey cultures. IMPACT OF THE STUDY: By the combined used of RAPD-PCR and TTGE it could be possible to follow the behaviour in strain or species composition of whey cultures during time.  相似文献   

15.
于永光  赵斌 《菌物学报》2008,27(2):209-216
设计在不同pH水平(4.3、5.1、5.8、6.8)下两种VA菌根真菌Glomus mosseae和Gigaspora margarita对紫云英Astragalus sinicus进行单接种、混合接种及无接种对照的盆栽实验.对紫云英地上和地下部分生物量、根部侵染率、SDH和ALP酶活进行了检测.实验结果表明:紫云英的生长效应与VA菌根真菌的侵染率及两种酶活成明显相关性.土壤pH升高,单接种Glomus mosseae和混合接种的侵染率也随之升高,而单接种Gigaspora margarita的侵染率呈现出先上升后下降的趋势.本实验设计了特异性扩增Glomus mosseae和Gigaspora margarita的引物gml和gigl,在混合接种实验中,nested PCR扩增结果显示:在低pH水平下(4.3-5.1)大多数根段为Gigaspora margarita所侵染,在高pH水平下(5.8-6.8)Glomusmosseae表现出较强的竞争力,但并没有检测到两种VA真菌存在于同一条侵染根段;对比单接种实验,在低pH水平下,Glomus mosseae显著抑制了Gigaspora margarita的侵染,而在高pH水平下Gigasporamargarita明显促进Glomus mosseae的侵染.  相似文献   

16.
AIMS: To develop a tool for rapid and inexpensive identification of the Lactobacillus casei complex. METHODS AND RESULTS: Lactobacillus casei, Lactobacillus paracasei, Lactobacillus zeae and Lactobacillus rhamnosus were identified by PCR-amplification of the segment between the U1 and U2 regions of 16S rDNA (position 8-357, Escherichia coli numbering) and temporal temperature gradient gel electrophoresis (TTGE). Seven tested Lact. paracasei strains were divided into three TTGE-subgroups. CONCLUSION: TTGE successfully distinguished between the closely-related target species. TTGE is also a powerful method for revealing sequence heterogeneities in the 16S rRNA genes. SIGNIFICANCE AND IMPACT OF THE STUDY: Due to rapid and easy performance, TTGE of PCR-amplified 16S rDNA fragments will be useful for the identification of extended numbers of isolates.  相似文献   

17.
The sequence differences within the 16S rRNA genes of Lactobacillus casei/paracasei and related species, Lactobacillus zeae and Lactobacillus rhamnosus, were investigated. Thirty-seven strains of mostly human or cheese origin were grouped by restriction endonuclease analysis (REA) of the total chromosomal DNA and by temporal temperature gradient gel electrophoresis (TTGE) of PCR-amplified 16S rRNA gene fragments. REA verified that all strains were genomically unique and singled out three major clusters, one L. rhamnosus-cluster and two clusters containing L. paracasei strains. The groups obtained by TTGE corresponded with one exception to the REA-clusters. In the TTGE clustering all L. paracasei strains formed one general group with one TTGE-band in common, and this group was sub-divided into five subgroups due to the presence of more than one TTGE-band in four of the subgroups. The occurrence of multiple TTGE-bands was investigated by amplifying and cloning of the 16S rRNA genes from the strains showing this phenomenon, thereby 12 clones from each strain were sequenced, demonstrating polymorphisms in almost all the cases. Subjecting the clones displaying sequence variations to TTGE as well as sequencing of 16S rDNA revealed by ribotyping of the strains, verified the presence of polymorphisms within the 16S rRNA genes. The migration characteristic of amplified DNA from a single clone corresponded to a specific band in the TTGE-pattern of the strain from which the clone originated. Southern blot hybridisation with a 16S rDNA probe demonstrated the presence of at least five 16S rRNA genes in L. casei/paracasei. A higher degree of variable positions than previously reported was observed in the 16S rRNA gene fragments of the members in the complex. Sequence comparison between the 16S rRNA gene copies of L. casei (CCUG 21451T) and L. zeae (CCUG 35515T) demonstrated that the two species shared almost the same sequence in some copies while the others were more different. Our results provide one explanation for the difficulties in reaching clear-cut taxa within the L. casei/paracasei complex.  相似文献   

18.
Temporal temperature gradient electrophoretic (TTGE) analysis of 16S rDNA sequences was optimized to monitor the methanogen population present in water and sediments of a small eutrophic lake, Priest Pot, in the English Lake district. The production of nonrepresentative TTGE profiles due to the generation of polymerase chain reaction (PCR) artifacts initially proved problematical. The use of a proofreading polymerase in the PCR was found to be essential and fully optimized protocols were established and tested to ensure confidence that the TTGE profiles truly reflected sequence diversity. TTGE analysis revealed the methanogen population to be less diverse in water than in sediment. The most genetic diversity was observed in TTGE profiles of sediment DNA isolated in winter and the least was in sediment DNA isolated in summer. DNA sequencing analysis of bands recovered from TTGE gels revealed the presence of two methanogen communities. One clustered with Methanosaeta species and the other with the Methanomicrobiales. Many sequences showed low DNA sequence similarity to known methanogens, suggesting that Priest Pot harbors previously undescribed methanogen species.  相似文献   

19.
 Fluorescence in situ hybridization (FISH) was applied to interphasic nuclei isolated from spores of four species of AM fungi : Scutellospora castanea, Glomus mosseae, Glomus intraradices and Gigaspora rosea. Ribosomal DNA loci were visualized using digoxigenin-labeled 25 S rDNA probes obtained by nested PCR. Several hybridization sites were detected per nucleus and an internuclear variability was observed in the number of loci. This is the first report of successful application of FISH to analyse the genomes of glomalean fungi. Accepted: 16 September 1998  相似文献   

20.
Using different techniques of molecular biology we investigated the bacterial diversity of the chemocline of the meromictic Lake Cadagno. Cloning of a total community 16S rDNA PCR product and subsequent screening with a combination of amplified ribosomal DNA restriction analysis and temporal temperature gradient gel electrophoresis (TTGE) analysis revealed that 30 of 47 randomly selected clones were unique. Partial sequencing and comparative analysis indicated a high bacterial diversity dominated by the gamma-Proteobacteria (33.3%). Most of these rDNA clone sequences were not closely related to any 16S rDNA sequence in the database. In a second approach, the TTGE pattern from an environmental sample was compared with the migration of the cloned 16S rDNA fragments. Four clone types were identified on the environmental pattern by excising and sequencing comigrating bands, three of which were well represented in the library: two Chromatiaceae species and one sequence affiliated with the Desulfobulbus assemblage. Using the fluorescent in situ hybridization technique we essentially confirmed the results of the cloning experiments and the TTGE analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号