首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors influencing lung IgA antibody responses to Nippostrongylus brasiliensis infections and the role of lung and fecal IgA antibodies in immunity to this nematode were studied in rats. Hooded Lister rats were vaccinated subcutaneously with infective larvae radio-attenuated at 80-180 kr or with a single dose of infective larvae somatic proteins administered intravenously or intragastrically, and then challenged 14 days later with normal larvae. It was found that optimal lung IgA antibody responses depended more on the duration of the antigenic stimulation than on the quantity of antigenic material present, although a threshold amount was required. However, comparisons of lung anti-larval IgA antibody levels in rats resistant or susceptible to challenge indicated that these antibodies were not directly involved in specific host protective immunity. Levels of haemagglutinating fecal antibodies reacting with adult nematode metabolites were correlated with the numbers of adult worms recovered from the intestines following vaccination and also with the degree of resistance to reinfection. However, preincubation of adult (day 5) nematodes in media containing the IgA fraction of fecal globulins from primary infected rats did not reduce the ability of these worms to establish and survive in naive rats.  相似文献   

2.
BALB/c-nu/nu mice and their intact nu/+ littermates are equally susceptible to infection with third-stage larvae of Nematospiroides dubius. Unlike their heterozygous littermates, however, the nu/nu mice are unable to form ganulomata in the intestinal wall and become only partially resistant to rechallenge. Following two or more infections, nu/nu mice maintain a high burden of adult intestinal worms, whereas worms are lost from immune nu/+ mice. Studies in T cell-injected nu/nu mice suggest that a full complement of T cells is needed to develop maximum resistance against the infective third-stage larvae and to expel adult worms. Measurement of serum immunoglobulin levels indicate that infected nu/+ mice have very high levels of IgG1 whereas the levels of IgG2a are reduced. In infected T cell-injected nu/nu mice, IgG1 levels increase with the number of T cells injected, whereas IgG2a levels are variable but always higher than in infected nu/+ mice.  相似文献   

3.
The jird, Meriones unguiculatus, infected with 80 normal infective larvae of Dipetalonema viteae, revealed a recovery rate of 27.9% 12 weeks after infection. A pretreatment by three injections of 50 normal larvae each and challenge by 80 larvae resulted in a recovery rate of 10.7%. The recovered worms were longer than those from the challenge control animals. When three times 50 irradiated larvae (35 krad) were inoculated, the recovery rate of the challenge decreased to 2.6%, representing a protection of 90.7%. The surviving adult worms were stunted and derived exclusively from the 80 normal larvae given for challenge, since absolutely no adult worms were recovered in eight animals inoculated three times with 50 irradiated larvae only. Sera of all pretreated jirds contained IgG and IgM antibodies which bound in immunoblotting experiments bound predominantly to three proteins of larvae with molecular masses of 68,140, and 165 kDa, respectively. Enzymatic surface iodination revealed that the three antigens were exposed on the larval surface. The coincidence of a partial resistance to a challenge infection and of an antibody response against surface proteins of infective larvae suggests an importance of these antigens for the rejection of D. viteae mediated by an acquired immunological resistance of M. unguiculatus.  相似文献   

4.
We describe a strategy for the mutagenesis of the free-living adult generation of Strongyloides ratti and selection of worms carrying new mutations in the subsequent F2 generation of infective larvae. We demonstrate that this strategy is successful via the selection of infective larvae that are resistant to the anthelmintic ivermectin at a concentration of 10 ng/ml. The majority of these larvae were unable to give rise to patent infections when used to infect parasite naive rats, implying that the majority of the ivermectin resistance mutations confer pleiotropic defects on parasitic, but not on free-living, development.  相似文献   

5.
One hundred Brugia pahangi infective larvae (L3) caused microfilaremic (mf + ve) infection in 56% of inbred PVG rats. Adult worms were recovered consistently from infected rats but worm recovery was very low, only 1-3% of L3 inoculated survived to adulthood and the worms were dispersed in a wide range of anatomical sites. This suggested that lack of microfilaremia may be due to the low probability of male and female worms meeting in the same site and thus may be numerically and topographically based. When the number of infective larvae inoculated was increased to 500, the percentage of mf + ve infections in rats also increased to 94%, corroborating the hypothesis that lack of mf was not due to an immune response. In a further experiment all infected rats had lost both mf and adult worms by day 420. It has yet to be established whether final rejection of the parasite is due to immunity.  相似文献   

6.
A complete or almost complete resistance (94-100%) to a superimposed Echinostoma revolutum infection existed in mice harboring 20-, 30-, and 40-day-old infections in the range of 2-4 to 30-35 worms, but no resistance was found at challenge Day 10. A similar high level of resistance (85-100%) also existed in mice for at least 6 weeks after natural expulsion of a primary 6 metacercarial infection and for at least 5 weeks after anthelmintic termination of a 30-day-old 20 metacercarial infection. Thymus-deficient nude mice failed to develop resistance to a superimposed infection, and the resistance in normal mice was inhibited by corticosteroid treatment. These findings are all in favor of a host immune response being responsible for the resistance against both a secondary and a superimposed infection. Nearly all the worms of a superimposed infection were, in resistant mice, expelled prior to 24 hr following infection (rapid expulsion), and the few worms circumventing this early expulsion persisted for at least 8 days. Newly excysted juvenile worms implanted intraduodenally into resistant mice were rejected to the same degree as juvenile worms from an oral metacercarial infection indicating that the newly excysted juvenile worms are the target of the host immune response. However, 7-day-old worms implanted intraduodenally into resistant mice survived indicating that adaptation to the host immune response had occurred. In conclusion, this host-parasite model is an example of concomitant immunity because the immunological mechanism responsible for the expulsion of the superimposed infection had no effect on the number of primary worms present.  相似文献   

7.
The development of adult worm burdens and microfilaremias were determined in jirds which received 2, 3, or 4 subcutaneous inoculations of 50 Brugia pahangi infective larvae. Parasite burdens in multiply inoculated jirds were compared to those in four different groups of jirds which received single inoculations of 50 infective larvae. One of each of these singly inoculated groups was infected on the same day that one of the inoculations was given to the multiply infected jirds. Thus, the duration of the infections in the four groups of jirds receiving one inoculation was 54, 118, 189, and 254 days. The development of lymphatic lesions and granulomatous hypersensitivity to B. pahangi antigen was assessed in all jirds at necropsy. The percentage recoveries of adult worms and their locations did not differ in the singly inoculated jirds with infections of different durations. A protective resistance to reinfection, as measured by adult worm recovery in multiply infected jirds, did not occur. The lymphatic lesion scores and numbers of intralymphatic thrombi was greatest in singly inoculated jirds examined 54 days after infection. Pulmonary granuloma areas around adult filarial antigen coated beads embolized in the lungs of jirds 3 days prior to necropsy were also greatest in singly inoculated jirds examined 54 days after infection. Using criteria of lesion scores and lymph thrombi numbers to assess lymphatic lesion severity, a decrease in lesion severity as well as pulmonary granuloma size around antigen coupled beads was seen by 118 days after infection in singly inoculated jirds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Oral inoculation of BALB/c mice with infective larvae of Heligmosomoides polygyrus resulted in chronic infection characterized by the release of parasite eggs in the feces for several months. The actual number of eggs per gram of feces was dependent on the dose of the inoculum. Serum IgE in infected mice peaked at a level of greater than 70 micrograms/ml during Weeks 3 through 6 following inoculation, and high levels of IgE (greater than 40 micrograms/ml) persisted for over 14 weeks. Protective immune responses resulted in reduced egg production and the development of markedly fewer adult worms in the small intestines following a challenge inoculation. The role of CD4+ and CD8+ T cells in these responses was examined by depletion in vivo of either T cell subpopulation with rat mAb specific for the appropriate determinants. Mice treated with anti-CD4 during a primary infection had increased EPG which was due primarily to an increase in worm fecundity (eggs produced per adult female). A challenge inoculation of mice that had been cleared of the primary infection with an anthelmintic drug induced a protective response that reduced development of new adult worms by 70-80% and their fecundity by greater than 90%. This protective response was abrogated by injection of mice with anti-CD4. Serum IgE diminished when adult worms were removed after anthelmintic treatment. A more precipitous drop in serum IgE followed successive treatments of mice with an anthelmintic and anti-CD4. In addition, the anamnestic serum IgE response to a challenge inoculation was reduced by over 80% in anti-CD4-treated mice. Anti-CD8 treatment had no appreciable effect on the immunological or parasitological parameters measured following a challenge inoculation with H. polygyrus. Thus, CD4+ T cells regulate host protective immunity, worm fecundity, and IgE levels in an H. polygyrus infection. This experimental system may be particularly suitable for analysis of chronic nematode infections of humans and livestock because of the responsiveness of the parasite in vivo to changes in host immune function.  相似文献   

9.
Efficacy of ivermectin on susceptible or resistant populations of the parasitic nematode Haemonchus contortus was determined in cattle and goats held in a barn. Goats were each infected with 3000 infective, ivermectin-susceptible or -resistant H. contortus larvae on day 0 and reinfected with 2000 infective larvae on day 24. Goats were treated orally with 600 micrograms kg-1 ivermectin on day 31. No significant differences were detected in blood packed cell volume (PCV) or total protein (TP), prepatent period, or epg among the four groups of goats that were each infected with one of four parasite strains (one susceptible, three resistant). There were no differences among the four parasite strains in the numbers of infective larvae that developed to the third larval stage from fecal cultures or in the viability of cultured infective larvae when held in the laboratory at 27 +/- 1 degrees C for 14 weeks. After treatment with ivermectin, there were significant differences among the parasite strains in PCV, TP, and epg. Total worm counts were reduced by 94 to 97% with three times the recommended dose. Immature and adult Skrjabinema ovis were also present in two treated goats. In a second test, one goat infected once with 10,000 infective larvae of a resistant strain of H. contortus and then treated with nine doses of ivermectin, increasing from 500 to 2000 micrograms kg-1 over a period of 133 days, had 35 adult worms at necropsy. In a third test, three calves were readily infected with an ivermectin-resistant strain of H. contortus from goats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The implantation and development of intravenously injected Trichinella spiralis newborn larvae were examined in different strains of inbred mice by determining muscle larvae burden. This was compared to the numbers of muscle larvae that established after a natural infection during which a quantitative assessment of intestinal newborn larvae production was made. In most inbred strains of mice, newborn larvae do not all successfully implant in muscle. Mice of the DBA/1 strain are the most resistant to successful implantation, and C3H mice are the most permissive. This pattern is evident in the strains studied whether newborn larvae are injected intravenously or are produced by intestinal adults. Thus, after a natural infection, 100% of intestinally produced newborn larvae implanted in C3H mice, whereas in NFR 68% and DBA/1 mice 62% successfully matured in muscle. Immunity to newborn larvae could be demonstrated as early as 10 days after exposure to this stage of the life cycle. This immunity was protective against a complete challenge infection given 9 days after newborn larvae had been injected intravenously. Protection against newborn larvae was identical in male and female mice or in mice from 1 to 9 months of age. We conclude that there are two mechanisms by which mice impair newborn larvae establishment or development in muscle. The first appears to be nonimmunological (non-specific resistance), and the second is immunological. Genetically determined variation in strain-specific expression is apparent with both mechanisms. In strains displaying high intrinsic "resistance" (DBA/1), this process is likely to account for most of the 38% reduction in newborn larvae establishment in a primary infection. However, immunity against newborn larvae develops quickly enough to have a significant effect on migratory larvae in primary infections where adults persist in the intestine (e.g., the B10 congenic mice), or when high adult worm burdens delay adult worm rejection. Muscle larvae burden, therefore, reflects systemic nonspecific resistance to newborn larvae as well as immunological processes that occur in the intestine and systemically.  相似文献   

11.
In mice, repeatedly infected orally with larvae of Nematospiroides dubius, resistance caused delay in the maturation of larvae, their investment in inflammatory nodules and, in sufficiently resistant animals, their death. The fecundity of adult worms was not affected by host resistance.Previously uninfected mice which had received adult worms by transplantation at operation produced only very low titres of reaginic antibody in comparison with mice infected with larvae by mouth.The migration of leucocytes from resistant mice was inhibited by a crude antigen derived from adult worms.In mice made passively immune by transfer of serum the entry of larvae into the wall of the intestine was delayed; there was no inflammatory response and the larvae did not die.In mice selectively depleted of thymus-derived lymphocytes no inflammatory response occurred and the maturation of larvae was not delayed in response to repeated infection.  相似文献   

12.
Dawkins H. J. S. and Grove D. I. 1981 Kinetics of primary and secondary infections with Strongyloides ratti in mice. International journal for Parasitology11: 89–96. The kinetics of infection with S. ratti were quantitated in normal and previously exposed C57B1 /6 mice. In primary infections, larvae penetrated the skin rapidly and were seen in peak numbers 12 h after infection. By 24 h after infection, larval numbers had declined appreciably and there was a slow decrease in numbers thereafter. Larvae were first observed in the lungs at 24 h and maximal recovery occurred at 48 h. It is thought that larval migration through the lungs is rapid. Worms were first seen in the intestines two days after infection. Maximum numbers were seen on the fifth day and worm expulsion was complete by day 10. Two moults took place in the small intestine during days 3 and 4 after infection. Rhabditiform larvae were first noted on the fourth day after infection. Mice exposed to S. ratti four weeks previously had significantly less larvae in the skin 4 and 12 h after infection but by 24 h there was no difference when compared with mice with primary infections. Peak recovery of larvae from the lungs occurred 24 h after infection; significantly less larvae were recovered on days 2 and 3 when compared with normal mice. There was a marked reduction in the adult worm burden in the gut; the number of worms recovered was less than one fifth of that seen in primary infections. Those worms which did mature were less fecund and were expelled from the intestines within 7 days of infection. It is suggested that in previously exposed animals, the migration of larvae from the skin is hastened, many of these larvae are destroyed in the lungs and that expulsion of worms which do mature in the intestines is accelerated.  相似文献   

13.
Potential sites for expression of acquired resistance to Strongyloides ratti larvae in rats were investigated. In rats immunized by exposure to a single live infection and challenged 30 to 40 days later, 46 to 98% of the challenge larvae failed to reach the small intestine. Multiply immunized rats nearly completely eliminated migrating challenge larvae. This early killing of migrating larvae occurred during the first 48 hr after challenge infection. Resistance to migrating challenge larvae was also induced by repeated injections with heat-killed infective larvae. That the intestine may also serve as an effective site for worm expulsion was confirmed by intestinal transfers of worms from rats with primary infections into resistant rats.  相似文献   

14.
Mature male Dipetalonema viteae released a substance(s) which caused enhanced microfilaraemia in infected hamsters. In hamsters implanted with female D. viteae, the microfilaraemia of a subsequent infection was suppressed. The microfilaraemia of female worms implanted in hamsters was depressed within 5 days when the animals were given a further infection with infective larvae.  相似文献   

15.
Mice were immunized to the intestinal stage of T. spiralis by using infections terminated with methyridine before production of newborn larvae had commenced. The muscle larvae which encysted following a normal complete challenge infection were reduced by 87 and 95% in immunized mice. No statistically significant reduction in a challenge infection of intravenously injected parenteral larvae was produced (8% and 15% actual reduction). Previous work has shown that adult worms in a challenge infection are stunted and expelled earlier as well as having a reduced fecundity; it is concluded that the immunity generated by the intestinal stage is largely specific in its action to that phase in a challenge infection.  相似文献   

16.
In order to study the mucosal invasion of a rodent intestinal nematode in bird intestine, chicks were infected with the intestinal nematode of rodents, Strongyloides venezuelensis, by subcutaneous larva inoculation and adult worm implantation. No evidence was obtained for larvae reaching the lungs or the intestine after infective larva inoculation. Adult worms implanted in the small intestine invaded the mucosa and remained there at least for 24 h, whereas those implanted in the caecum were trapped by mucus, and did not invade the mucosa. Mucosal invasion of adult worms in the small intestine was confirmed by histological examination. The number of adult worms in the intestinal mucosal tissue dropped rapidly within the first 24 h, which was associated with infiltrating granulocytes around the worms. The present study suggests that S. venezuelensis adult worms are able to invade the intestinal tissue of chicks, which do not belong to the vertebrate class of its normal definitive host, but that they are eliminated rapidly by mucosal defense system of the bird.  相似文献   

17.
Reports of natural infections of sylvatic carnivores by adult worms of species similar to Lagochilascaris minor in the Neotropical region led to attempts to establish experimental cycles in laboratory mice and in cats. Also, larval development was seen in the skeletal muscle of an agouti (Dasyprocta leporina) infected per os with incubated eggs of the parasite obtained from a human case. In cats, adult worms develop and fertile eggs are expelled in the feces; in mice, larval stages of the parasite develop, and are encapsulate in the skeletal muscle, and in the adipose and subcutaneous connective tissue. From our observations, we conclude that the larva infective for the mouse is the early 3rd stage, while for the final host the infective form is the later 3rd stage. A single moult was seen in the mouse, giving rise to a small population of 4th stage larvae, long after the initial infection.  相似文献   

18.
Oral transfer of parasitic adult Strongyloides stercoralis produced patent infections in gerbils, C57BL/6J and SCID mice. In gerbils receiving adult worms, 7.3% of the transferred worms established and autoinfective L3 were found beginning on day 5 post-transfer, with peak numbers seen on days 6 and 7 post-transfer and few seen by 9 days post-transfer. These results suggest that development of autoinfective L3 in the gerbil is limited by the immune response of the host. When given orally to mice, between 7.2% (C57BL/6J) and 19.5% (SCID) of the adult worms established. These levels are higher than those previously obtained by the subcutaneous infection of SCID mice with infective larvae. No autoinfective larvae were found in infected mice and the ratio of L1/adult worms was small compared with that seen in gerbils. Thus, mice infected orally can be used as a model to study the interaction between the adult worm and the host, and since autoinfection has not been seen in the murine model, as developed to date, orally infected mice may be useful as a model to study mechanisms preventing autoinfection.  相似文献   

19.
Rats infected orally with Trichinella spiralis developed an immunity that was induced by and expressed against separate phases of the parasite's enteral life cycle. Infectious muscle larvae generated an immune response (rapid expulsion) that was directed against the very early intestinal infection and resulted in the expulsion of worms within 24 hr. This response eliminated more than 95% of worms in an oral challenge inoculum. Developing larvae (preadults) also induced an immune response that was expressed against adult worms. The effect on adults was dependent upon continuous exposure of worms to the immune environment throughout their enteral larval development. Immunity induced by preadult T. spiralis was not expressed against adult worms transferred from nonimmune rats. While adult worms were resistant to the immunity engendered by preadults they induced an efficient immunity that was autospecific. Both “preadult” and “adult” immunities were expressed in depression of worm fecundity as well as in the expulsion of adults from the gut. However, the two reactions differed in respect to their kinetics and their efficiency against various worm burdens. Preadult immunity was directed mainly against fecundity whereas adult immunity favored worm expulsion. All responses (rapid expulsion, preadult and adult immunity, and antifecundity) acted synergistically to produce sterile immunity against challenge infections of up to 5000 muscle larvae. These findings indicate that the host protective response to T. spiralis is a complex, multifactorial process that operates sequentially and synergistically to protect the host against reinfection.  相似文献   

20.
The ferret, Mustela putorius furo, was found to be susceptible to Dirofilaria immitis infection when exposed to low (14) or high (280-420) numbers of infective larvae harvested from Aedes aegypti. Eight ferrets (half of them cortisonized) were inoculated subcutaneously with 14 larvae each. All of them were subsequently found to harbor D. immitis in the heart, and all but one of them had worms of both sexes. Six of these ferrets were examined for microfilaremia at 31 to 35 weeks after inoculation; 3 were positive (one observed only at postmortem examination) and there was evidence that fertilization of female worms had occurred in one other. Females up to 25.5 cm and males up to 16.0 cm were recovered. There was no evidence that the cortisonization of some ferrets had affected the infections. Both male and female ferrets became infected. Four cortisonized ferrets were inoculated with 280 or 420 larvae of D. immitis (divided equally between subcutaneous and intraperitoneal routes). All of them died 16 to 18 weeks after inoculation, yielding 102 to 125 immature D. immitis. In these lethal infections, worms were recovered from the heart and adjoining vessels, and also from vascular and extravascular sites throughout the body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号