首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alterations in DNA methylation have been implicated in mammalian development. Hence, the identification of tissue-specific differentially methylated regions (TDMs) is indispensable for understanding its role. Using restriction landmark genomic scanning of six mouse tissues, 150 putative TDMs were identified and 14 were further analyzed. The DNA sequences of the 14 mouse TDMs are analyzed in this study. Six of the human homologous regions show TDMs to both mouse and human and genes in five of these regions have conserved tissue-specific expression: preferential expression in testis. A TDM, DDX4, is further analyzed in nine testis tissues. An increase in methylation of the promoter region is significantly associated with a marked reduction of the gene expression and defects in spermatogenesis, suggesting that hypomethylation of the DDX4 promoter region regulates DDX4 gene expression in spermatogenic cells. Our results indicate that some genomic regions with tissue-specific methylation and expression are conserved between mouse and human and suggest that DNA methylation may have an important role in regulating differentiation and tissue-/cell-specific gene expression of some genes.  相似文献   

3.
Although some tissue-specific cis-acting elements have been identified, the molecular mechanisms of tissue-specific gene expression remain elusive. Here, we report the identification by a yeast one-hybrid screen of five proteins, Os10g31330/glycine-rich, Os01g10400/metallothionein-like, Os05g51180/nucleic acid-binding, Os05g37930/unknown and Os01g01689/phosphatidylinositol kinase that bound to either the positive or negative tissue-specific cis elements of a rice promoter from the green tissue-specific D54O gene. These proteins are localised in the nucleus and the genes encoding them are differentially expressed in different tissues, further suggesting their putative roles in regulating gene expression. These results suggest that the green tissue-specific expression of the D54O gene may be regulated by the interaction of multiple proteins with cis elements in the promoter region.  相似文献   

4.
5.
6.
7.
We used dogfish shark (Squalus acanthias) as a model for proteome analysis of six different tissues to evaluate tissue-specific protein expression on a global scale and to deduce specific functions and the relatedness of multiple tissues from their proteomes. Proteomes of heart, brain, kidney, intestine, gill, and rectal gland were separated by two-dimensional gel electrophoresis (2DGE), gel images were matched using Delta 2D software and then evaluated for tissue-specific proteins. Sixty-one proteins (4%) were found to be in only a single type of tissue and 535 proteins (36%) were equally abundant in all six tissues. Relatedness between tissues was assessed based on tissue-specific expression patterns of all 1465 consistently resolved protein spots. This analysis revealed that tissues with osmoregulatory function (kidney, intestine, gill, rectal gland) were more similar in their overall proteomes than non-osmoregulatory tissues (heart, brain). Sixty-one proteins were identified by MALDI-TOF/TOF mass spectrometry and biological functions characteristic of osmoregulatory tissues were derived from gene ontology and molecular pathway analysis. Our data demonstrate that the molecular machinery for energy and urea metabolism and the Rho-GTPase/cytoskeleton pathway are enriched in osmoregulatory tissues of sharks. Our work provides a strong rationale for further study of the contribution of these mechanisms to the osmoregulation of marine sharks.  相似文献   

8.
9.
The S100 protein family is the largest subgroup within the superfamily of proteins carrying the Ca2+-binding EF-hand motif. Despite their small molecular size and their conserved functional domain of two distinct EF-hands, S100 proteins developed a plethora of tissue-specific intra- and extracellular functions. Accordingly, various diseases such as cardiomyopathies, neurodegenerative and inflammatory disorders, and cancer are associated with altered S100 protein levels. Here, we review the different S100 protein functions and related diseases from an evolutionary point of view. We analyzed the structural variations, which are the basis of functional diversification, as well as the genomic organization of the S100 family in human and compared it with the S100 repertoires in mouse and rat. S100 genes and proteins are highly conserved between the different mammalian species. Moreover, we identified evolutionary related subgroups of S100 proteins within the three species, which share functional similarity and form subclusters on the genomic level. The available S100-specific mouse models are summarized and the consequences of our results are discussed with regard to the use of genetically engineered mice as human disease models. An update of the S100 nomenclature is included, because some of the recently identified S100 genes and pseudogenes had to be renamed.  相似文献   

10.
Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal information by construction. However, the specialized functions of the differentiated cell types which are assembled into tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is tissue-specificity, therefore, encoded within the interactome? In order to address this question, we combined protein-protein interactions, expression data, functional annotations and interactome topology. We first identified a subnetwork formed exclusively of proteins whose interactions were observed in all tested tissues. These are mainly involved in housekeeping functions and are located at the topological center of the interactome. This ‘Largest Common Interactome Network’ represents a ‘functional interactome core’. Interestingly, two types of tissue-specific interactions are distinguished when considering function and network topology: tissue-specific interactions involved in regulatory and developmental functions are central whereas tissue-specific interactions involved in organ physiological functions are peripheral. Overall, the functional organization of the human interactome reflects several integrative levels of functions with housekeeping and regulatory tissue-specific functions at the center and physiological tissue-specific functions at the periphery. This gradient of functions recapitulates the organization of organs, from cells to organs. Given that several gradients have already been identified across interactomes, we propose that gradients may represent a general principle of protein-protein interaction network organization.  相似文献   

11.
Aging is characterized by the interlocking decay of biological functions over time. Microarrays have been successful in elucidating some of the genome-wide changes that occur with age. Using the AGEMAP dataset that catalogs changes in gene expression as a function of age in 16 tissues in mice, we identified tissue-specific aging genes. Coordinated aging processes across different tissues then were clarified in crosstissue coexpression networks on both the gene and pathway levels. Our findings provide more concrete information about coordinated aging across different tissues. By bridging gene-level and tissue-level research, this study could help identify targets for attenuation of critical aging-related genes, pathways, or networks for antiaging intervention.  相似文献   

12.
13.
Translocator proteins (TSPO) are the products of a family of genes that is evolutionarily conserved from bacteria to humans and expressed in most mammalian tissues and cells. Human TSPO (18 kDa) is expressed at high levels in steroid synthesizing endocrine tissues where it localizes to mitochondria and functions in the first step of steroid formation, the transport of cholesterol into the mitochondria. TSPO expression is elevated in cancerous tissues and during tissue injury, which has lead to the hypothesis that TSPO has roles in apoptosis and the maintenance of mitochondrial integrity. We recently identified a new paralog of Tspo in both the human and mouse. This paralog arose from an ancient gene duplication event before the divergence of the classes aves and mammals, and appears to have specialized tissue-, cell-, and organelle-specific functions. Evidence from the study of TSPO homologs in mammals, bacteria, and plants supports the conclusion that the TSPO family of proteins regulates specialized functions related to oxygen-mediated metabolism. In this review, we provide a comprehensive overview of the divergent function and evolutionary origin of Tspo genes in Bacteria, Archaea, and Eukarya domains.  相似文献   

14.
Mitochondria, through oxidative phosphorylation, are the primary source of energy production in all tissues under aerobic conditions. Although critical to life, energy production is not the only function of mitochondria, and the composition of this organelle is tailored to meet the specific needs of each cell type. As an organelle, the mitochondrion has been a popular subject for proteomic analysis, but quantitative proteomic methods have yet to be applied to tease apart subtle differences among mitochondria from different tissues or muscle types. Here we used mass spectrometry-based proteomics to analyze mitochondrial proteins extracted from rat skeletal muscle, heart, and liver tissues. Based on 689 proteins identified with high confidence, mitochondria from the different tissues are qualitatively quite similar. However, striking differences emerged from the quantitative comparison of protein abundance between the tissues. Furthermore we applied similar methods to analyze mitochondrial matrix and intermembrane space proteins extracted from the same mitochondrial source, providing evidence for the submitochondrial localization of a number of proteins in skeletal muscle and liver. Several proteins not previously thought to reside in mitochondria were identified, and their presence in this organelle was confirmed by protein correlation profiling. Hierarchical clustering of microarray expression data provided further evidence that some of the novel mitochondrial candidates identified in the proteomic survey might be associated with mitochondria. These data reveal several important distinctions between mitochondrial and submitochondrial proteomes from skeletal muscle, heart, and liver tissue sources. Indeed approximately one-third of the proteins identified in the soluble fractions are associated predominantly to one of the three tissues, indicating a tissue-dependent regulation of mitochondrial proteins. Furthermore a small percentage of the mitochondrial proteome is unique to each tissue.  相似文献   

15.
烟草细胞色素P450的基因组学分析   总被引:1,自引:0,他引:1  
细胞色素P450是一类含血红素的单加氧酶超基因家族, 在植物多种代谢途径中起着重要作用。为了解烟草中的P450的种类和数量, 文章将植物代表性P450蛋白质序列与烟草基因组序列比对, 在烟草基因组中鉴定了44个P450家族共263个成员。将这些烟草P450基因与烟草表达序列标签(EST)比对, 发现173个成员有EST证据。通过与拟南芥中已知的P450蛋白序列比较, 分析了部分烟草P450蛋白序列的特征和二级结构。根据烟草基因芯片数据和部分基因的RT-PCR结果, 发现73个烟草P450基因能够在不同的生长发育时期表达, 其中部分基因具有组织特异性。这些研究结果为烟草P450基因功能的深入分析奠定了基础。  相似文献   

16.
DNase I footprinting assays were performed to identify the binding sites for putative trans-acting factors involved in the control of alpha-fetoprotein (AFP) gene expression using mouse AFP promoter fragments (-839 to +56) and nuclear protein extracts from fetal, newborn, and adult livers and from brain and kidney. Our studies have shown that with nuclear protein from adult mouse liver, there are 14 protected regions in the AFP promoter up to -839 base pairs (bp). Region I (-82 to -43) was protected by at least three different factors, one of which is CCAAT-binding/enhancer-binding protein. This region is highly conserved in the mouse, rat, and human AFP genes and has been shown previously to be essential for the regulation of tissue-specific expression in mouse. Differences in DNase I protection with fetal, newborn, and adult nuclear proteins have been observed in the proximal promoter region (up to -202 bp) and in regions further upstream (up to -839 bp). Significant differences among liver, kidney, and brain nuclear protein-binding sites have also been observed. In these studies, we have mapped the fetal and adult nuclear protein-binding sites of the cis-acting DNA sequences of the mouse AFP proximal promoter (up to -200) and have identified specific protein-binding sites in the distal promoter (-200 to -839). We have also identified the sites of the AFP promoter which bind nuclear proteins from highly differentiated tissues in which AFP is not expressed.  相似文献   

17.
18.
Global understanding of tissue-specific differences in mitochondrial signal transduction requires comprehensive mitochondrial protein identification from multiple cell and tissue types. Here, we explore the feasibility and efficiency of protein identification using the one-dimensional gel electrophoresis in combination with the nano liquid-chromatography tandem mass spectrometry (GeLC-MS/MS). The use of only 40 mug of purified mitochondrial proteins and data analysis using stringent scoring criteria and the molecular mass validation of the gel slices enables the identification of 227 known mitochondrial proteins (membrane and soluble) and 453 additional proteins likely to be associated with mitochondria. Replicate analyses of 60 mug of mitochondrial proteins on the faster scanning LTQ mass spectrometer validate all the previously identified proteins and most of the single hit proteins except the 81 single hit proteins. Among the identified proteins, 466 proteins are known to functionally participate in various processes such as respiration, tricarboxylic acid cycle (TCA cycle), amino acid and nucleotide metabolism, glycolysis, protection against oxidative stress, mitochondrial assembly, molecular transport, protein biosynthesis, cell cycle control, and many known cellular processes. The distribution of identified proteins in terms of size, pI, and hydrophobicity reveal that the present analytical strategy is largely unbiased and very efficient. Thus, we conclude that this approach is suitable for characterizing subcellular proteomes form multiple cells and tissues.  相似文献   

19.
Mitochondria fulfill many tissue‐specific functions in cell metabolism. We set out to identify differences in the protein composition of mitochondria from five tissues frequently affected by mitochondrial disorders. The proteome of highly purified mitochondria from five mouse organs was separated by high‐resolution 2DE. Tissue‐specific spots were identified through nano‐LC/ESI‐MS/MS and quantified by densitometry in ten biological replicates. We identified 87 consistently deviating spots representing 48 proteins. The percentage of variant spots ranged between 4.2% and 6.0%; 21 proteins having tissue‐specific isospots. Consistent tissue‐specific processing/regulation was seen for carbamoyl‐phosphate‐synthase, aldehyde‐dehydrogenase 2, ATP‐synthase α‐chain, and isocitrate‐dehydrogenase α‐subunit. Thirty tissue‐specific proteins were associated with mitochondrial disorders in humans. We further identified alcohol‐dehydrogenase, catalase, quinone‐oxidoreductase, cyclophilin‐A, and Upf0317, a potential biotin‐carboxyl‐carrier protein, which had not been annotated as “mitochondrial” in Gene Ontology or MitoCarta databases. Their targeting to the mitochondria was verified by transfection of full‐length GFP‐tagged plasmids. Given the high evolutionary conservation of mitochondrial metabolic pathways, these data further annotate the mitochondrial proteome and advance our understanding of the pathophysiology and tissue‐specificity of symptoms seen in patients with mitochondrial disorders. The generation of 2D electrophoretic maps of the mitochondrial proteome using tissue specimens in the milligram range facilitates this technique for clinical applications and biomarker research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号