首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Many gram-negative bacteria employ N-acylhomoserine lactones (AHL) to regulate diverse physiological processes in concert with cell population density (quorum sensing [QS]). In the plant pathogen Erwinia carotovora, the AHL synthesized via the carI/expI genes are responsible for regulating the production of secreted plant cell wall-degrading exoenzymes and the antibiotic carbapen-3-em carboxylic acid. We have previously shown that targeting the product of an AHL synthase gene (yenI) from Yersinia enterocolitica to the chloroplasts of transgenic tobacco plants caused the synthesis in planta of the cognate AHL signaling molecules N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL), which in turn, were able to complement a carI-QS mutant. In the present study, we demonstrate that transgenic potato plants containing the yenI gene are also able to express AHL and that the presence and level of these AHL in the plant increases susceptibility to infection by E. carotovora. Susceptibility is further affected by both the bacterial level and the plant tissue under investigation.  相似文献   

4.
The symbiosis island ICE Ml SymR7A of Mesorhizobium loti R7A is an integrative and conjugative element (ICE) that carries genes required for a nitrogen-fixing symbiosis with Lotus species. ICE Ml SymR7A encodes homologues (TraR, TraI1 and TraI2) of proteins that regulate plasmid transfer by quorum sensing in rhizobia and agrobacteria. Introduction of traR cloned on a plasmid induced excision of ICE Ml SymR7A in all cells, a 1000-fold increase in the production of 3-oxo-C6-homoserine lactone (3-oxo-C6-HSL) and a 40-fold increase in conjugative transfer. These effects were dependent on traI1 but not traI2 . Induction of expression from the traI1 and traI2 promoters required the presence of plasmid-borne traR and either traI1 or 100 pM 3-oxo-C6-HSL, suggesting that traR expression or TraR activity is repressed in wild-type cells by a mechanism that can be overcome by additional copies of traR . The traI2 gene formed an operon with hypothetical genes msi172 and msi171 that were essential for ICE Ml SymR7A excision and transfer. Our data suggest that derepressed TraR in conjunction with TraI1-synthesized 3-oxo-C6-HSL regulates excision and transfer of ICE Ml SymR7A through expression of msi172 and msi171 . Homologues of msi172 and msi171 were present on putative ICEs in several α-proteobacteria, indicating a conserved role in ICE excision and transfer.  相似文献   

5.
Vibrio anguillarum, which causes terminal hemorrhagic septicemia in fish, was previously shown to possess a LuxRI-type quorum-sensing system (vanRI) and to produce N-(3-oxodecanoyl)homoserine lactone (3-oxo-C10-HSL). However, a vanI null mutant still activated N-acylhomoserine lactone (AHL) biosensors, indicating the presence of an additional quorum-sensing circuit in V. anguillarum. In this study, we have characterized this second system. Using high-pressure liquid chromatography in conjunction with mass spectrometry and chemical analysis, we identified two additional AHLs as N-hexanoylhomoserine lactone (C6-HSL) and N-(3-hydroxyhexanoyl)homoserine lactone (3-hydroxy-C6-HSL). Quantification of each AHL present in stationary-phase V. anguillarum spent culture supernatants indicated that 3-oxo-C10-HSL, 3-hydroxy-C6-HSL, and C6-HSL are present at approximately 8.5, 9.5, and 0.3 nM, respectively. Furthermore, vanM, the gene responsible for the synthesis of these AHLs, was characterized and shown to be homologous to the luxL and luxM genes, which are required for the production of N-(3-hydroxybutanoyl)homoserine lactone in Vibrio harveyi. However, resequencing of the V. harveyi luxL/luxM junction revealed a sequencing error present in the published sequence, which when corrected resulted in a single open reading frame (termed luxM). Downstream of vanM, we identified a homologue of luxN (vanN) that encodes a hybrid sensor kinase which forms part of a phosphorelay cascade involved in the regulation of bioluminescence in V. harveyi. A mutation in vanM abolished the production of C6-HSL and 3-hydroxy-C6-HSL. In addition, production of 3-oxo-C10-HSL was abolished in the vanM mutant, suggesting that 3-hydroxy-C6-HSL and C6-HSL regulate the production of 3-oxo-C10-HSL via vanRI. However, a vanN mutant displayed a wild-type AHL profile. Neither mutation affected either the production of proteases or virulence in a fish infection model. These data indicate that V. anguillarum possesses a hierarchical quorum sensing system consisting of regulatory elements homologous to those found in both V. fischeri (the LuxRI homologues VanRI) and V. harveyi (the LuxMN homologues, VanMN).  相似文献   

6.
In cell-free Yersinia pseudotuberculosis culture supernatants, we have chemically characterized three N-acyl homoserine lactone (AHL) molecules, N-octanoyl homoserine lactone (C8-HSL), N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) and N-hexanoyl homoserine lactone (C6-HSL). We have identified, cloned and sequenced two pairs of LuxR/I homologues termed YpsR/I and YtbR/I. In Escherichia coli at 37 degrees C, YpsI and YtbI both synthesize C6-HSL, although YpsI is responsible for 3-oxo-C6-HSL and YtbI for C8-HSL synthesis respectively. However, in a Y. pseudotuberculosis ypsI-negative background, YtbI appears capable of adjusting the AHL profile from all three AHLs at 37 degrees C and 22 degrees C to the absence of 3-oxo-C6-HSL at 28 degrees C. Insertion deletion mutagenesis of ypsR leads to the loss of C8-HSL at 22 degrees C, which suggests that at this temperature the YpsR protein is involved in the hierarchical regulation of the ytbR/I locus. When compared with the parent strain, the ypsR and ypsI mutants exhibit a number of phenotypes, including clumping (ypsR mutant), overexpression of a major flagellin subunit (ypsR mutant) and increased motility (both ypsR and ypsI mutants). The clumping and motility phenotypes are both temperature dependent. These data are consistent with a hierarchical quorum-sensing cascade in Y. pseudotuberculosis that is involved in the regulation of clumping and motility.  相似文献   

7.
8.
9.
10.
马晨晨  欧杰  王婧 《微生物学通报》2013,40(11):2005-2013
【目的】研究两株假单胞菌的标准菌株荧光假单胞菌(Pseudomonas fluorescens)和铜绿假单胞菌(Pseudomonas aeruginosa)在纯培养条件下所释放的AHLs类信号分子种类、量和变化规律。【方法】利用乙酸乙酯等有机溶剂萃取菌种纯培养液的AHLs类信号分子, 检测手段利用HPLC-MS-MS。【结果】荧光假单胞菌释放信号分子的种类为: C4-HSL、C6-HSL、C8-HSL、3-oxo-C10-HSL、3-oxo-C12-HSL、3-oxo-C14-HSL。铜绿假单胞菌释放信号分子的种类为: C4-HSL、C6-HSL、C8-HSL、C10-SL、C12-HSL、C14-HSL、3-oxo-C8-HSL、3-oxo-C10-HSL、3-oxo-C12-HSL、3-oxo-C14-HSL。【结论】两株菌所释放各类信号分子的量均随时间变化, 当菌落数达到109?1010时信号分子的量达到峰值, 两株菌所释放各类信号分子含量差异较大。  相似文献   

11.
N-(3-oxododecanoyl)-l -homoserine lactone (3-oxo-C12-HSL), a quorum-sensing (QS) molecule produced by Gram-negative bacteria in the gastrointestinal tract, adversly impacts host cells. Our previous study demonstrated that 3-oxo-C12-HSL induced a decrease in cell viability via cell apoptosis and eventually disrupted mucin synthesis from LS174T goblet cells. However, the molecular mechanism underlying cell apoptosis and whether pyroptosis was involved in this process are still unknown. In this study, we emphasized on the caspases signal pathway and sterile inflammation to reveal the harmful effects of 3-oxo-C12-HSL on LS174T goblet cells. Our data showed that 3-oxo-C12-HSL is a major inducer of oxidative stress indicated by a high level of intracellular reactive oxygen species (ROS). However, TQ416, an inhibitor of paraoxonase 2, can effectively block oxidative stress. A higher ROS level is the trigger for activating the caspase-1 and 3 cascade signal pathways. Blockade of ROS synthesis and caspase-1 and 3 cascades can obviously rescue the viability of LS174T cells after 3-oxo-C12-HSL treatment. We also found that paralleled with a higher level of ROS and caspases activation, an abnormal expression of proinflammatory cytokines was induced by 3-oxo-C12-HSL treatment; however, the blockage of TLRs-NF-κB pathway cannot restore cell viability and secretary function. These data collectively indicate that 3-oxo-C12-HSL exposure induces damages to cell viability and secretary function of LS174T goblet cells, which is mediated by oxidative stress, cell apoptosis, and sterile inflammation. Overall, the data in this study will provide a better understanding of the harmful impacts of some QS molecules on host cells and their underlying mechanism.  相似文献   

12.
Vibrio anguillarum produces several interlinked acylated homoserine lactone (AHL) signal molecules which may influence expression of its virulence factors such as exoprotease production and biofilm formation. Using both thin layer chromatography and HPLC-high resolution mass spectrometry (HPLC-HRMS), we demonstrate in this study that the same types of AHLs are produced by many serotypes of V. anguillarum and that altering in vitro growth conditions (salinity, temperature and iron concentration) has little influence on the AHL-profile. Most strains produced N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL) and N-(3-hydroxy-hexanoyl)-l-homoserine lactone (3-hydroxy-C6-HSL) as the dominant molecules. Also, two spots with AHL activity appeared on TLC plates, which could not be identified as AHL structures. Trace amounts of N-(3-hydroxy-octanoyl)-l-homoserine lactone, N-(3-hydroxy-decanoyl)-l-homoserine lactone and N-(3-hydroxy-dodecanoyl)-l-homoserine lactone (3-hydroxy-C8-HSL, 3-hydroxy-C10-HSL and 3-oxo-C12-HSL, respectively) were also detected by HPLC-HRMS analysis from in vitro cultures. Most studies of quorum sensing (QS) systems have been conducted in vitro, the purpose of our study was to determine if the same acylated homoserine lactones were produced in vivo during infection. Extracts from infected fish were purified using several solid phase extraction strategies to allow chromatographic detection and separation by both TLC and HLPC-HRMS. 3-oxo-C10-HSL and 3-hydroxy-C6-HSL were detected in organs from fish dying from vibriosis, however, compared to in vitro culturing where 3-oxo-C10-HSL is the dominant molecule, 3-hydroxy-C6-HSL was prominent in the infected fish tissues. Hence, the balance between the QS systems may be different during infection compared to in vitro cultures. For future studies of QS systems and the possible specific interference with expression of virulence factors, in vitro cultures should be optimised to reflect the in vivo situation.  相似文献   

13.
Quorum sensing, the population density-dependent regulation mediated by N-acylhomoserine lactones (AHSL), is essential for the control of virulence in the plant pathogen Erwinia carotovora ssp. carotovora (Ecc). In Erwinia carotovora ssp. the AHSL signal with an acyl chain of either 6 or 8 carbons is generated by an AHSL synthase, the expI gene product. This work demonstrates that the AHSL receptor, ExpR1, of Ecc strain SCC3193 has strict specificity for the cognate AHSL 3-oxo-C8-HSL. We have also identified a second AHSL receptor (ExpR2) and demonstrate a novel quorum sensing mechanism, where ExpR2 acts synergistically with the previously described ExpR1 to repress virulence gene expression in Ecc. We show that this repression is released by addition of AHSLs and appears to be largely mediated via the negative regulator RsmA. Additionally we show that ExpR2 has the novel property to sense AHSLs with different acyl chain lengths. The expI expR1 double mutant is able to act in response to a number of different AHSLs, while the expI expR2 double mutant can only respond to the cognate signal of Ecc strain SCC3193. These results suggest that Ecc is able to react both to the cognate AHSL signal and the signals produced by other bacterial species.  相似文献   

14.
15.
Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C(6)-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C(9)-CPA), had a strong inhibitory effect on prodigiosin production. C(9)-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C(9)-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C(6)-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C(9)-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1.  相似文献   

16.
Peroxisome proliferator activated receptor (PPARγ) has been suggested as a target for anti-inflammatory therapy in chronic lung disease, including infection with Pseudomonas aeruginosa. However, the P. aeruginosa signal molecule N-(3-oxo-dodecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) has been reported to inhibit function of PPARs in mammalian cells. This suggests that binding of 3-oxo-C12-HSL to PPARs could increase inflammation during P. aeruginosa infection, particularly if it could compete for binding with other PPAR ligands. We investigated the ability of 3-oxo-C12-HSL to bind to a PPARγ ligand binding domain (LBD) construct, and to compete for binding with the highly active synthetic PPARγ agonist rosiglitazone. We demonstrate that 3-oxo-C12-HSL binds effectively to the PPARγ ligand binding domain, and that concentrations of 3-oxo-C12-HSL as low as 1 nM can effectively interfere with the binding of rosiglitazone to the PPARγ ligand binding domain. Because 3-oxo-C12 HSL has been demonstrated in lungs during P. aeruginosa infection, blockade of PPARγ-dependent signaling by 3-oxo-C12-HSL produced by the infecting P. aeruginosa could exacerbate infection-associated inflammation, and potentially impair the action of PPAR-activating therapy. Thus the proposed use of PPARγ agonists as anti-inflammatory therapy in lung P. aeruginosa infection may depend on their ability to counteract the effects of 3-oxo-C12-HSL.  相似文献   

17.
The half-life of N-hexanoyl-l-homoserine lactone (C6-HSL) was determined under various pH and temperature conditions, and in several plant environments. C6-HSL was sensitive to alkaline pH, a process that was also temperature-dependent. In addition, C6-HSL disappeared from plant environments, i.e. axenic monocot and dicot plants cultivated under gnotobiotic, hydroponic conditions, albeit with variable kinetics. The disappearance was rapid at the root system of legume plants such as clover or Lotus, and slow or non-existent at the root system of monocots such as wheat or corn. These variable kinetics were not dependent upon pH changes that may have affected the growth media of the plants. Furthermore, C6-HSL did not accumulate in the plant, and the plant did not produce inhibitors of the C6-HSL signal. HPLC analyses revealed that C6-HSL disappeared from the media, and hence, Lotus exhibited a natural C6-HSL inactivating ability. This ability was not specific for C6-HSL and allowed the degradation of other N-acyl-homoserine lactones such as 3-oxo-C6-HSL, 3-oxo-octanoyl-HSL and 3-oxo-decanoyl-HSL. Preliminary investigation revealed that the inactivating ability is temperature-dependant and possibly of enzymatic origin.  相似文献   

18.
19.
20.
Rhizobium sp. strain NGR234 forms symbiotic, nitrogen-fixing nodules on a wide range of legumes via functions largely encoded by the plasmid pNGR234a. The pNGR234a sequence revealed a region encoding plasmid replication (rep) and conjugal transfer (tra) functions similar to those encoded by the rep and tra genes from the tumor-inducing (Ti) plasmids of Agrobacterium tumefaciens, including homologues of the Ti plasmid quorum-sensing regulators TraI, TraR, and TraM. In A. tumefaciens, TraI, a LuxI-type protein, catalyzes synthesis of the acylated homoserine lactone (acyl-HSL) N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL). TraR binds 3-oxo-C8-HSL and activates expression of Ti plasmid tra and rep genes, increasing conjugation and copy number at high population densities. TraM prevents this activation under noninducing conditions. Although the pNGR234a TraR, TraI, and TraM appear to function similarly to their A. tumefaciens counterparts, the TraR and TraM orthologues are not cross-functional, and the quorum-sensing systems have differences. NGR234 TraI synthesizes an acyl-HSL likely to be 3-oxo-C8-HSL, but traI mutants and a pNGR234a-cured derivative produce low levels of a similar acyl-HSL and another, more hydrophobic signal molecule. TraR activates expression of several pNGR234a tra operons in response to 3-oxo-C8-HSL and is inhibited by TraM. However, one of the pNGR234a tra operons is not activated by TraR, and conjugal efficiency is not affected by TraR and 3-oxo-C8-HSL. The growth rate of NGR234 is significantly decreased by TraR and 3-oxo-C8-HSL through functions encoded elsewhere in the NGR234 genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号