共查询到20条相似文献,搜索用时 15 毫秒
1.
This study focused on apoptosis in various tissues of the black tiger shrimp Penaeus monodon following white spot syndrome virus (WSSV) injection. The study included: (1) light microscopy (LM) and transmission electron microscopy (TEM) of various tissues; (2) fluorescent LM of nuclear DNA by staining with 4, 6-diamidine-2-phenyl indole dihydrochloride (DAPI) and TdT-mediated dUTP nick-end labelling (TUNEL) techniques; and (3) determination of caspase-3 activity. Juvenile P. monodon were injected with WSSV, and several tissues of ectodermal and mesodermal origin were studied at different intervals after injection. The total haemocyte count had decreased to one-tenth of its original level 60 h after WSSV injection. By LM, extensive destruction by WSSV was observed in the stomach epithelium, gills, hematopoietic tissue, hemocytes and the heart, but the most severely affected tissue was the subcuticular epithelium. TEM revealed that at 6 h post-injection (p.i.) the chromatin of infected nuclei was marginated, and by 24 h p.i. the nuclei were filled with enveloped and non-enveloped WSSV virions. At later stages of the infection, the nucleus extruded WSSV particles. Chromatin margination and nuclear condensation and fragmentation (i.e. signs of apoptosis) were observed as early as 6 h p.i. in all affected tissues, but occurred in cells without WSSV virions rather than in cells with virions. The occurrence of apoptosis was supported by data obtained using TUNEL and by DAPI-staining and progressed from 6 to 60 h p.i. In addition, caspase-3 activity in WSSV-infected shrimp was about 6-fold higher than that in uninfected shrimp. The data strongly suggests that apoptosis occurs following WSSV infection in P. monodon, but the extent to which it contributes to shrimp mortality requires further investigation. 相似文献
2.
DNA extracts from white spot syndrome virus (WSSV) that had infected post-larvae and juveniles of cultured shrimp, wild shrimp and crabs, which had been collected from different hatcheries and farms located along both the east and west coasts of India, revealed considerable variation in several previously identified WSSV DNA repeat regions. These include the 54 bp repeat in ORF 94, the 69 bp repeat in ORF 125 and the compound 45 and 57 bp repeat region in ORF 75. In ORF 94, 13 genotypes were observed with the number of repeats ranging from 2 to 16 units. While 7 repeat units were commonly observed (11.3%), no samples with 11 or 15 repeat units were found. In ORF 125, 11 types were found, with repeats ranging from 2 to 14 units. The most prevalent genotype displayed 4 repeat units (47.1%); no samples with 6 or 13 repeats were observed. The compound repeat region of ORF 75 displayed 6 different patterns of repeats. Samples with the same repeat pattern in one ORF did not always show identical repeat patterns in one or both of the other repeat regions. These data suggest that combined analysis of all 3 variable loci could be used to differentiate and characterize specific WSSV strains. For general epidemiological studies, the best marker with maximum variation is ORF 94, followed by ORF 125 and ORF 75. The 3 repeat regions above were used to compare WSSV genotypes from disease outbreaks on 3 sets of farms from different locations in the state of Andhra Pradesh. The genotypes within each farm set were almost identical, but differed between farm sets, suggesting that WSSV transmission occurred directly through virus carriers or water exchange between adjacent farms at each location. These findings show that genotyping can be a useful epidemiological tool for tracing the movement of WSSV within infected populations. 相似文献
3.
Commercial, intensive, earthen shrimp ponds (188) in southern Thailand were stocked with postlarvae (PL) of Penaeus monodon that had tested positive or negative for white-spot syndrome virus (WSSV) infection by polymerase chain reaction (PCR) assay. All the PL were grossly healthy. At 2 wk intervals after stocking, shrimp from each pond were examined for gross WSSV lesions and tested for WSSV by PCR. Shrimp from all the ponds stocked with WSSV-PCR-positive PL (Group 0, n = 43) eventually showed gross signs of white-spot disease (WSD) at an average of 40 d after stocking. Of the remaining ponds stocked with WSSV-PCR-negative PL (n = 145), some remained WSSV-PCR-negative throughout the study (Group 5, n = 52), while others (93) became WSSV-PCR-positive after stocking, during the first month (Group 1, n = 23), second month (Group 2, n = 40), third month (Group 3, n = 24), or fourth month (Group 4, n = 6). Crop failure was defined as a pond drain or forced harvest before 14 wk or 98 d of cultivation. For Group 0 the proportion of ponds failing was 0.953, while it was only 0.019 for Group 5. Thus, the relative risk of failure for Group 0 was approximately 50 times that of Group 5. The relative risk of failure for Group 0 was also 3 times that for ponds stocked with WSSV-PCR-negative PL. Obviously, not all WSSV outbreaks resulted in crop failure. Of the 93 ponds stocked with PCR-negative PL that later yielded WSSV-PCR-positive shrimp, 53% reached successful harvest. The study showed that PCR screening of PL and rejection of WSSV-positive batches before stocking could greatly improve the chances of a successful harvest. 相似文献
4.
World Journal of Microbiology and Biotechnology - 相似文献
5.
Aims: To investigate VP37 [WSV 254 of White spot syndrome virus (WSSV) genome] interacting with shrimp cells and protecting shrimp against WSSV infection. Methods and Results: VP37 was expressed in Escherichia coli and was confirmed by Western blotting. Virus overlay protein binding assay (VOPBA) technique was used to analyse the rVP37 interaction with shrimp and the results showed that rVP37 interacted with shrimp cell membrane. Binding assay of recombinant VP37 with shrimp cell membrane by ELISA confirmed that purified rVP37 had a high-binding activity with shrimp cell membrane. Binding of rVP37 to shrimp cell membrane was a dose-dependent. Competition ELISA result showed that the envelope protein VP37 could compete with WSSV to bind to shrimp cells. In vivo inhibition experiment showed that rVP37 provided 40% protection. Inhibition of virus infection by rVP37 in primary cell culture revealed that rVP37 counterparted virus infection within the experiment period. Conclusions: VP37 has been successfully expressed in E . coli . VP37 interacted with shrimp cells. Significance and Impact of the Study: The results suggest that rVP37 has a potential application in prevention of virus infection. 相似文献
7.
White spot syndrome virus is currently the leading cause of production losses in the shrimp industry. Penaeus monodon Rab7 protein has been recognized as a viral-binding protein with an efficient protective effect against white spot syndrome infection. Plant-derived recombinant PmRab7 might serve as an alternative source for in-feed vaccination, considering the remarkable abilities of plant expression systems. PmRab7 was introduced into the Arabidopsis thaliana T87 genome. Arabidopsis-derived recombinant PmRab7 showed high binding activity against white spot syndrome virus and a viral envelope, VP28. The growth profile of Arabidopsis suspension culture expressing PmRab7 (ECR21# 35) resembled that of its counterpart. PmRab7 expression in ECR21# 35 reached its maximum level at 5 mg g(-1) dry weight in 12 days, which was higher than those previously reported in Escherichia coli and in Pichia. Co-injection of white spot syndrome virus and Arabidopsis crude extract containing PmRab7 in Litopenaeus vannamei showed an 87% increase in shrimp survival rate at 5 day after injection. In this study, we propose an alternative PmRab7 source with higher production yield, and cheaper culture media costs, that might serve the industry's need for an in-feed supplement against white spot syndrome infection. 相似文献
9.
White spot disease (WSD) is caused by the white spot syndrome virus (WSSV), which results in devastating losses to the shrimp farming industry around the world. However, the mechanism of virus entry and spread into the shrimp cells is unknown. A binding assay in vitro demonstrated VP28-EGFP (envelope protein VP28 fused with enhanced green fluorescence protein) binding to shrimp cells. This provides direct evidence that VP28-EGFP can bind to shrimp cells at pH 6.0 within 0.5 h. However, the protein was observed to enter the cytoplasm 3 h post-adsorption. Meanwhile, the plaque inhibition test showed that the polyclonal antibody against VP28 (a major envelope protein of WSSV) could neutralize the WSSV and block an infection with the virus. The result of competition ELISA further confirmed that the envelope protein VP28 could compete with WSSV to bind to shrimp cells. Overall, VP28 of the WSSV can bind to shrimp cells as an attachment protein, and can help the virus enter the cytoplasm. 相似文献
10.
Pacific white shrimp (Litopenaeus vannamei) were injected with Taura syndrome virus (TSV) to assess shrimp immune responses and survival. TSV-infected shrimp suffered high mortality, but mock-infected and untreated shrimp experienced no mortality. Moribund shrimp were a pale, reddish colour and were lethargic and soft-shelled. Their haemolymph was clear red and coagulated poorly. In TSV-infected shrimp, the total haemocyte count (THC), hyalinocyte and granulocyte counts, and total plasma protein decreased significantly to 21%, 24%, 17% and 56% of untreated control values, respectively. Haemocyanin decreased to 67%, and clottable proteins to 80% of control values (P< 0.01). Copper and calcium ions, haemocytic transglutaminase (TGase) activity and plasma growth inhibitory activity against Vibrio harveyi also decreased significantly. Generation of intrahaemocytic superoxide anion, O(-2), in TSV-infected shrimp was significantly greater (P< 0.05) than in both control groups, no matter whether glucan stimulated or unstimulated. But the relative increase of intrahaemocytic O(-2) generation in TSV-infected shrimp response to glucan stimulation was lower in both controls. Plasma phenoloxidase (PO) activity increased significantly in TSV-infected shrimp. The plasma bacterial agglutinin titre against E. coli and V. harveyi, growth inhibition of E. coli and the concentration of magnesium ions in TSV-infected shrimp did not change significantly.In conclusion, ten of thirteen haemolymph parameters changed significantly during the host-TSV interaction. These parameters might be valuable references of shrimp health status. 相似文献
11.
White spot syndrome virus (WSSV) is an enveloped, large dsDNA virus that mainly infects penaeid shrimp, causing serious damage to the shrimp aquaculture industry. Like other animal viruses, WSSV infection induces apoptosis. Although this occurs even in by-stander cells that are free of WSSV virions, apoptosis is generally regarded as a kind of antiviral immune response. To counter this response, WSSV has evolved several different strategies. From the presently available literature, we construct a model of how the host and virus both attempt to regulate apoptosis to their respective advantage. The basic sequence of events is as follows: first, when a WSSV infection occurs, cellular sensors detect the invading virus, and activate signaling pathways that lead to (1) the expression of pro-apoptosis proteins, including PmCasp (an effecter caspase), MjCaspase (an initiator caspase) and voltage-dependent anion channel (VDAC); and (2) mitochondrial changes, including the induction of mitochondrial membrane permeabilization and increased oxidative stress. These events initiate the apoptosis program. Meanwhile, WSSV begins to express its genes, including two anti-apoptosis proteins: AAP-1, which is a direct caspase inhibitor, and WSV222, which is an E3 ubiquitin ligase that blocks apoptosis through the ubiquitin-mediated degradation of shrimp TSL protein (an apoptosis inducer). WSSV also induces the expression of a shrimp anti-apoptosis protein, Pm-fortilin, which can act on Bax to inhibit mitochondria-triggered apoptosis. This is a life and death struggle because the virus needs to prevent apoptosis in order to replicate. If WSSV succeeds in replicating in sufficient numbers, this will result in the death of the infected penaeid shrimp host. 相似文献
12.
Sequence comparisons of the genomes of white spot syndrome virus (WSSV) strains have identified regions containing variable-length insertions/deletions (i.e. indels). Indel-I and Indel-II, positioned between open reading frames (ORFs) 14/15 and 23/24, respectively, are the largest and the most variable. Here we examined the nature of these 2 indel regions in 313 WSSV-infected Penaeus monodon shrimp collected between 2006 and 2009 from 76 aquaculture ponds in the Mekong Delta region of Vietnam. In the Indel-I region, 2 WSSV genotypes with deletions of either 5950 or 6031 bp in length compared with that of a reference strain from Thailand (WSSV-TH-96-II) were detected. In the Indel-II region, 4 WSSV genotypes with deletions of 8539, 10970, 11049 or 11866 bp in length compared with that of a reference strain from Taiwan (WSSV-TW) were detected, and the 8539 and 10970 bp genotypes predominated. Indel-II variants with longer deletions were found to correlate statistically with WSSV-diseased shrimp originating from more intensive farming systems. Like Indel-I lengths, Indel-II lengths also varied based on the Mekong Delta province from which farmed shrimp were collected. 相似文献
14.
This study explored whether Crassostrea gigas oysters can be used as a bioindicator of white spot syndrome virus (WSSV) in shrimp farm water canals. Bioassays showed that C. gigas can accumulate WSSV in their gills and digestive glands but do not become infected, either by exposure to seawater containing WSSV or by cohabitation with infected shrimp. The use of a WSSV nested PCR to screen oysters placed in water canals at the entry of a shrimp farm allowed WSSV to be detected 16 d prior to the disease occurring. The finding that C. gigas can concentrate small amounts of WSSV present in seawater without being harmed makes it an ideal sentinel species at shrimp farms. 相似文献
16.
In 1997, white spot syndrome virus (WSSV) was discovered in shrimp culture facilities in South Carolina, USA. This disease was known to cause devastating mortalities in cultured populations in Southeast Asia and prompted concern for the health of wild populations in the USA. Our study surveyed wild shrimp populations for the presence of WSSV by utilizing molecular diagnostics and bioassay techniques. A total of 1150 individuals (586 Litopenaeus setiferus, 477 Farfantepenaeus aztecus and 87 F. dourarum) were examined for the presence of WSSV DNA by PCR. A total of 32 individuals tested positive and were used in a bioassay to examine the transmission of disease to healthy individuals of the culture species L. vannamei. DNA sequencing of PCR products from a positive individual confirmed that the positive individuals carried WSSV DNA. Significant mortalities were seen in test shrimp injected with tissue extracts from heavily infected wild shrimp. These data confirm the existence of WSSV in wild shrimp stocks along the Atlantic Coast and that the virus can cause mortalities in cultured stocks. 相似文献
17.
This study investigated the biomass production process from the laboratory to the pilot scale in order to use the nutrient-rich biomass of the diatom Thalassiosira weissflogii as live feed for white-leg shrimp (Litopenaeus vannamei) at larval stages (zoeal, mysis, and postlarval) and in commercial production in hatcheries in Vietnam. Our results showed that T. weissflogii was successfully cultured in 1–2 L Erlenmeyer flasks, 0.2–3.5 m3 composite tanks, and 6.5 m3 tubular photobioreactors, with the highest cell density of 1.6 × 106 cells mL?1 reached after 6 days of culture. Under optimal culture conditions, the protein, lipid, and carbohydrate contents in this algal biomass were 13.2%, 20.0%, and 10.0% of dry cell weight, respectively. The fatty acid composition contains high amount of palmitic acid (C16:0, 43.11% of total fatty acid), and polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, C20:5ω-3), approximated 16.5% of total fatty acid. In a 50 L larval rearing tank, at the optimal stocking density of 125 nauplii L?1, the survival percentage (75.55%), the total body length (from 5.376 ± 0.007 to 10.860 ± 0.030 mm), and weight (at from PL1 to PL12 stages) (from 0.145 ± 0.002 to 1.158 ± 0.005 g) of the white-leg shrimp larvae reached the highest values but the metamorphosis time (234 h) was shortest compared with the other stocking densities. Further, adding living T. weissflogii biomass to the diet of white-leg shrimp larvae at the nauplii 6 stage led to an increase in the body length, weight, and survival percentage of white-leg shrimp larvae of 21.17%, 35.7%, and 33% higher compared with those of larvae fed the control diet (without the addition of T. weissflogii), respectively. At the same time, the metamorphosis time of larvae (from Z1 to PL1) decreased by 4 h compared to the control group. In intensive ponds (area of 6400 m2 pond?1), using seed stocks at the postlarvae 12 stage that had been fed T. weissflogii, the final weight, yield, and survival percentage of the shrimp were increased by 7.3%, 14.2%, and 16.3%, respectively, compared with those of the control group. There were no statistically significant differences in the protein and carbohydrate contents in the shrimp flesh among the experimental and control group (p > 0.05). The lipid, omega-3, omega-6, and omega-9 fatty acid contents of shrimp flesh in experiment formula (per 100 g shrimp) were 1.21 g, 72.9 mg, 114 mg, and 86.1 mg, 11%, 29%, 21.6%, and 17.7% higher than that those in control, respectively. The obtained results show the great potential of using T. weissflogii as live feed on white-leg shrimp farms in Vietnam. 相似文献
19.
White spot syndrome virus (WSSV) virions were purified from the hemolymph of experimentally infected crayfish Procambarus clarkii, and their proteins were separated by 8 to 18% gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to give a protein profile. The visible bands were then excised from the gel, and following trypsin digestion of the reduced and alkylated WSSV proteins in the bands, the peptide sequence of each fragment was determined by liquid chromatography-nano-electrospray ionization tandem mass spectrometry (LC-nanoESI-MS/MS) using a quadrupole/time-of-flight mass spectrometer. Comparison of the resulting peptide sequence data against the nonredundant database at the National Center for Biotechnology Information identified 33 WSSV structural genes, 20 of which are reported here for the first time. Since there were six other known WSSV structural proteins that could not be identified from the SDS-PAGE bands, there must therefore be a total of at least 39 (33 + 6) WSSV structural protein genes. Only 61.5% of the WSSV structural genes have a polyadenylation signal, and preliminary analysis by 3' rapid amplification of cDNA ends suggested that some structural protein genes produced mRNA without a poly(A) tail. Microarray analysis showed that gene expression started at 2, 6, 8, 12, 18, 24, and 36 hpi for 7, 1, 4, 12, 9, 5, and 1 of the genes, respectively. Based on similarities in their time course expression patterns, a clustering algorithm was used to group the WSSV structural genes into four clusters. Genes that putatively had common or similar roles in the viral infection cycle tended to appear in the same cluster. 相似文献
20.
Crustacean fortilin or the product of the translationally controlled tumor protein (TCTP) gene isolated from Penaeus monodon, is well conserved and has a Ca(++) binding domain. Pm-fortilin has anti-apoptotic properties and is present at high levels during the onset of viral infections in P. monodon. The possibility of using rFortilin to protect against white spot syndrome virus (WSSV) infection was tested. Injection of shrimp with rFortilin, after infection with WSSV, resulted in 80-100% survival and detection of very low levels of WSSV by PCR, whereas in moribund samples WSSV levels were very high. This result implies that injection of recombinant rFortilin decreases viral infection by an unknown mechanism, but probably by inhibiting viral replication. Using a yeast two-hybrid screen for cellular protein partners to rFortilin we identified an unknown protein that bound to fortilin. This is a novel polypeptide of 93 amino acids with a number of XPPX signature sequences that are often reported to have a function in antiviral peptides. 相似文献
|