首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prion protein is a membrane tethered glycoprotein that binds copper. Conversion to an abnormal isoform is associated with neurodegenerative diseases known as prion diseases. Expression of the prion protein has been suggested to prevent cell death caused by oxidative stress. Using cell based models we investigated the potential of the prion protein to protect against copper toxicity. Although prion protein expression effectively protected neurones from copper toxicity, this protection was not necessarily associated with reduction in oxidative damage. We also showed that glycine and the prion protein could both protect neuronal cells from oxidative stress. Only the prion protein could protect these cells from the toxicity of copper. In contrast glycine increased copper toxicity without any apparent oxidative stress or lipid peroxidation. Mutational analysis showed that protection by the prion protein was dependent upon the copper binding octameric repeat region. Our findings demonstrate that copper toxicity can be independent of measured oxidative stress and that prion protein expression primarily protects against copper toxicity independently of the mechanism of cell death.  相似文献   

2.
The pathology of human prion diseases is affected by polymorphism at amino acid residue 129 of the prion protein gene. Recombinant mouse prion proteins mimicking either form of the polymorphism were prepared to examine their effect on the conformation and the level of superoxide dismutase (SOD) activity of the prion protein. Following the binding of copper atoms to prion protein, antibody mapping and CD analysis detected conformational differences between the two forms of protein. However, neither the level of copper binding nor the level of SOD activity associated with this form of prion protein altered with the identity of codon 129. These results suggest that in the holo-metal binding form of the protein, prion structure but not its SOD activity is affected by polymorphism at codon 129.  相似文献   

3.
Copper are generally bound to proteins, e.g. the prion and the amyloid beta proteins. We have previously shown that copper ions are required to nitrosylate thiol groups in the core protein of glypican-1, a heparan sulfate-substituted proteoglycan. When S-nitrosylated glypican-1 is then exposed to an appropriate reducing agent, such as ascorbate, nitric oxide is released and autocatalyzes deaminative cleavage of the glypican-1 heparan sulfate side chains at sites where the glucosamines are N-unsubstituted. These processes take place in a stepwise manner, whereas glypican-1 recycles via a caveolin-1-associated pathway where copper ions could be provided by the prion protein. Here we show, by using both biochemical and microscopic techniques, that (a) the glypican-1 core protein binds copper(II) ions, reduces them to copper(I) when the thiols are nitrosylated and reoxidizes copper(I) to copper(II) when ascorbate releases nitric oxide; (b) maximally S-nitrosylated glypican-1 can cleave its own heparan sulfate chains at all available sites in a nitroxyl ion-dependent reaction; (c) free zinc(II) ions, which are redox inert, also support autocleavage of glypican-1 heparan sulfate, probably via transnitrosation, whereas they inhibit copper(II)-supported degradation; and (d) copper(II)-loaded but not zinc(II)-loaded prion protein or amyloid beta peptide support heparan sulfate degradation. As glypican-1 in prion null cells is poorly S-nitrosylated and as ectopic expression of cellular prion protein restores S-nitrosylation of glypican-1 in these cells, we propose that one function of the cellular prion protein is to deliver copper(II) for the S-nitrosylation of recycling glypican-1.  相似文献   

4.
In this study, we established Neuro2a (N2a) neuroblastoma subclones and characterized their susceptibility to prion infection. The N2a cells were treated with brain homogenates from mice infected with mouse prion strain Chandler. Of 31 N2a subclones, 19 were susceptible to prion as those cells became positive for abnormal isoform of prion protein (PrP(Sc)) for up to 9 serial passages, and the remaining 12 subclones were classified as unsusceptible. The susceptible N2a subclones expressed cellular prion protein (PrP(C)) at levels similar to the parental N2a cells. In contrast, there was a variation in PrP(C) expression in unsusceptible N2a subclones. For example, subclone N2a-1 expressed PrP(C) at the same level as the parental N2a cells and prion-susceptible subclones, whereas subclone N2a-24 expressed much lower levels of PrP mRNA and PrP(C) than the parental N2a cells. There was no difference in the binding of PrP(Sc) to prion-susceptible and unsusceptible N2a subclones regardless of their PrP(C) expression level, suggesting that the binding of PrP(Sc) to cells is not a major determinant for prion susceptibility. Stable expression of PrP(C) did not confer susceptibility to prion in unsusceptible subclones. Furthermore, the existence of prion-unsusceptible N2a subclones that expressed PrP(C) at levels similar to prion-susceptible subclones, indicated that a host factor(s) other than PrP(C) and/or specific cellular microenvironments are required for the propagation of prion in N2a cells. The prion-susceptible and -unsusceptible N2a subclones established in this study should be useful for identifying the host factor(s) involved in the prion propagation.  相似文献   

5.
Prion protein expression modulates neuronal copper content   总被引:2,自引:0,他引:2  
The prion protein is a copper (Cu)-binding protein. The abnormal isoform of this protein is associated with the transmissible spongiform encephalopathies or prion diseases. In prion diseases, the prion protein loses its Cu binding capacity. The effect of prion protein expression on the Cu content of the brain was investigated. Transgenic mice, either overexpressing the prion protein or expressing a mutant form lacking the Cu-binding region of the protein, were compared with wild-type mice and mice in which expression of the protein was knocked out. Age-dependent differences in Cu content of the brain were detected. Also, synaptosomal fractions from the brains of the mice showed different Cu content depending on the expression of the prion protein. Mice expressing prion protein, but without the Cu-binding domain showed reduced Cu content. Mice overexpressing the prion protein showed little difference in Cu in the brain compared with wild type but also the prion protein expressed by the mice showed a reduction in the level of Cu bound. These results confirm that prion protein expression modulates the Cu level found at the synapse and this effect is dependent on its Cu binding capacity. Loss of normal Cu binding by the prion protein altered age-related increases in metals in the brain. This may explain why many forms of human prion disease do not develop until late in life.  相似文献   

6.
BackgroundCultured cell lines infected with prions produce an abnormal isoform of the prion protein (PrPSc). In this study, two types of cells persistently infected with prion were treated with curcumin-related compounds. We found that the compounds behave differently in neuroblastoma neuro-2a (N2a) cells infected with different prion strains.MethodsCurcumin and related compounds were applied to the two types of persistently prion infected cells to analyze the different activities of the compounds.ResultsIn ScN2a cells, which were infected with the Rocky Mountain Laboratory prion strain, two of the six compounds significantly reduced the PrPSc level in a dose-dependent manner. On the other hand, in N167 cells, effective suppression of the total amount of PrPSc was not observed; instead, two other compounds promoted the formation of covalently linked PrPSc dimers.ConclusionsChemometric analysis was used to determine the factors that contributed to the different effects of the six compounds. It showed that the ability to form hydrogen bonds, such as phenolic hydroxyl groups, and hydrophobic molecular properties predominantly contributed to the reduction of the PrPSc level in the ScN2a cells and the dimer formation of PrPSc in the N167 cells, respectively.General significanceThe extracted information can be used to delineate the differences among prion strains and to design compounds that are directed toward their respective activities.  相似文献   

7.
8.
Recent experimental evidence supports the hypothesis that prion proteins (PrPs) are involved in the Cu(II) metabolism. Moreover, the copper binding region has been implicated in transmissible spongiform encephalopathies, which are caused by the infectious isoform of prion proteins (PrP(Sc)). In contrast to mammalian PrP, avian prion proteins have a considerably different N-terminal copper binding region and, most interestingly, are not able to undergo the conversion process into an infectious isoform. Therefore, we applied x-ray absorption spectroscopy to analyze in detail the Cu(II) geometry of selected synthetic human PrP Cu(II) octapeptide complexes in comparison with the corresponding chicken PrP hexapeptide complexes at pH 6.5, which mimics the conditions in the endocytic compartments of neuronal cells. Our results revealed that structure and coordination of the human PrP copper binding sites are highly conserved in the pH 6.5-7.4 range, indicating that the reported pH dependence of copper binding to PrP becomes significant at lower pH values. Furthermore, the different chicken PrP hexarepeat motifs display homologous Cu(II) coordination at sub-stoichiometric copper concentrations. Regarding the fully cation-saturated prion proteins, however, a reduced copper coordination capability is supposed for the chicken prion protein based on the observation that chicken PrP is not able to form an intra-repeat Cu(II) binding site. These results provide new insights into the prion protein structure-function relationship and the conversion process of PrP.  相似文献   

9.
The prion protein is a copper binding glycoprotein expressed in neurones and other cells. Conversion of this protein to an abnormal isoform is central to the cause of prion diseases or transmissible spongiform encephalopathies. Detecting slight structural differences between different forms of the prion protein could be essential to understanding the role of the protein in health and disease. Dual polarisation interferometry (DPI) is a new method that allows detection of small structural differences. We used this technique to evaluate the effectiveness of DPI in the analysis of metal binding to recombinant mouse prion protein. DPI was able to measure mass change in the prion protein following addition of copper and could identify reproducible differences in the structure of prion protein dependent on how metal was added to the protein. These slight structural differences were confirmed by the use of circular dichroism spectroscopy and Fourier-transformed infra-red spectroscopy. These results suggest that DPI can provide important information on both transitory and stable structural difference that are induced in the prion protein. This technique could be important not only for the study of metal-protein interactions but also small structural differences that could define prion strains.  相似文献   

10.
The prion protein is known to be a copper-binding protein, but affinity and stoichiometry data for the full-length protein at a physiological pH of 7 were lacking. Furthermore, it was unknown whether only the highly flexible N-terminal segment with its octarepeat region is involved in copper binding or whether the structured C-terminal domain is also involved. Therefore we systematically investigated the stoichiometry and affinity of copper binding to full-length prion protein PrP(23-231) and to different N- and C-terminal fragments using electrospray ionization mass spectrometry and fluorescence spectroscopy. Our data indicate that the unstructured N-terminal segment is the cooperative copper-binding domain of the prion protein. The prion protein binds up to five copper(II) ions with half-maximal binding at approximately 2 microm. This argues strongly for a direct role of the prion protein in copper metabolism, since it is almost saturated at about 5 microm, and the exchangeable copper pool concentration in blood is about 8 microm.  相似文献   

11.
12.
The conversion of the cellular prion protein, PrP(C), to an abnormal isoform, PrP(Sc), is a central event leading to neurodegeneration in prion diseases. Deciphering the molecular and cellular changes imparted by PrP(Sc) accumulation remains an arduous task due to the small number of cell lines supporting prion replication. Here we introduce the 1C11 cell line as a new in vitro model to investigate prion pathogenesis. This cell line is a committed neuroectodermal progenitor able to differentiate into fully functional serotonergic or catecholaminergic neurons. 1C11 cells, which naturally express PrP(C) from the undifferentiated state, can be chronically infected with various prion strains. Prion infection does not promote any noticeable phenotypic change in the progenitor cells nor prevent the onset of the serotonergic and catecholaminergic differentiation programs. Pathogenic prions, however, deviate the overall neurotransmitter-metabolism in both pathways by decreasing bioamine synthesis, storage, and transport, and enhancing catabolism. Noteworthy, oxidized derivatives of both serotonin and catecholamines are selectively detected in the differentiated progenies of infected cells and contribute to irreversible impairment in bioamine synthesis. Finally, the level of PrP(Sc) accumulation, that of infectivity, and the extent of all prion-induced changes in infected cells appear to be correlated. The report of such specific effects of infection on neuronal functions provides a foundation for dissecting the events underlying loss of neuronal homeostasis in prion diseases.  相似文献   

13.
The prion protein (PrP) binds copper and under some conditions copper can facilitate its folding into a more protease resistant form. Hence, copper levels may influence the infectivity of the scrapie form of prion protein (PrPSc). To determine the feasibility of copper-targeted therapy for prion disease, we treated mice with a copper chelator, D-(-)-penicillamine (D-PEN), starting immediately following intraperitoneal scrapie inoculation. D-PEN delayed the onset of prion disease in the mice by about 11 days (p = 0.002), and reduced copper levels in brain by 29% (p < 0.01) and in blood by 22% (p = 0.03) compared with control animals. Levels of other metals were not significantly altered in the blood or brain. Modest correlation was observed between incubation period and levels of copper in brain (p = 0.08) or blood (p = 0.04), indicating that copper levels are only one of many factors that influence the rate of progression of prion disease. In vitro, copper dose-dependently enhanced the proteinase K resistance of the prion protein, and this effect was counteracted in a dose-dependent manner by co-incubation with D-PEN. Overall, these findings indicate that copper levels can influence the conformational state of PrP, thereby enhancing its infectivity, and this effect can be attenuated by chelator-based therapy.  相似文献   

14.
Various compounds were evaluated for ability to inhibit the formation of the abnormal protease-resistant form of prion protein (PrP-res) in two cell lines infected with different prion strains. Examination of the structure-activity relationships indicated that compounds with copper-selective chelating ability and whose copper complexes have high SOD-like activity are candidates for anti-prion drug.  相似文献   

15.
The prion protein is well known because of its association with prion diseases. These diseases, which include variant CJD, are unusual because they are neurodegenerative diseases that can be transferred between individuals experimentally. The prion protein is also widely known as a copper binding protein. The binding of copper to the prion protein is possibly necessary for its normal cellular function. The prion protein has also been suggested to bind other metals, and among these, manganese. Despite over ten years of research on manganese and prion disease, this interaction has often been dismissed or at best seen as a poor cousin to the involvement of copper. However, recent data has shown that manganese could stabilise prions in the environment and that chelation therapy specifically aimed at manganese can extend the life of animals with prion disease. This article reviews the evidence for a link between prions and manganese.  相似文献   

16.
GFP-tagged PrP supports compromised prion replication in transgenic mice   总被引:2,自引:0,他引:2  
The ability of green fluorescent protein (GFP)-prion protein (PrP) fusions to support prion propagation has not been demonstrated. Here, we show that while transgenic mice expressing PrP tagged at its amino terminus with enhanced GFP, referred to as EGFPrP-N, supported prion replication, disease onset was prolonged, the brains of diseased mice did not exhibit typical disease neuropathology and disease-associated EGFPrP-N lacked the full spectrum of biochemical properties normally associated with PrP(Sc). Co-expression of wild-type PrP and EGFPrP-N substantially reduced prion incubation times and resulted in accumulation of protease-resistant EGFPrP(Sc)-N in the brains of transgenic mice as well as chronically infected cultured cells, suggesting that wild-type PrP rescued a compromised amino terminal function in EGFPrP-N. While our results show that EGFPrP(C)-N adopts a conformation necessary for the production of infectious prions, the synergistic interaction of wild-type and EGFPrP-N underscores the importance of the amino terminus in modulating prion pathogenesis.  相似文献   

17.
We first verified that a single chain Fv fragment against prion protein (anti-PrP scFv) was secreted by HEK293T cells and prevented prion replication in infected cells. We then stably expressed anti-PrP scFv in brain-engraftable murine microglial cells and intracerebrally injected these cells into mice before or after infection with prions. Interestingly, the injection before or at an early time point after infection attenuated the infection marginally but significantly prolonged survival times of the mice. These suggest that the ex vivo gene transfer of anti-PrP scFvs using brain-engraftable cells could be a possible immunotherapeutic approach against prion diseases.  相似文献   

18.
There is considerable evidence that the prion protein binds copper. However, there have also been suggestions that prion protein (PrP) binds manganese. We used isothermal titration calorimetry to identify the manganese binding sites in wild-type mouse PrP. The protein showed two manganese binding sites with affinities that would bind manganese at concentrations of 63 and 200 mum at pH 5.5. This indicates that PrP binds manganese with affinity similar to other known manganese-binding proteins. Further study indicated that the main manganese binding site is associated with His-95 in the so-called "fifth site" normally associated with copper binding. Additionally, it was shown that occupancy by copper does not prevent manganese binding. Under these conditions, manganese binding resulted in an altered conformation of PrP, displacement of copper, and altered redox chemistry of the metal-protein complex. Cyclic voltammetric measurements suggested a complex redox chemistry involving manganese bound to PrP, whereas copper-bound PrP was able to undergo fully reversible electron cycling. Additionally, manganese binding to PrP converted it to a form able to catalyze aggregation of metal-free PrP. These results further support the notion that manganese binding could cause a conformation change in PrP and trigger changes in the protein similar to those associated with prion disease.  相似文献   

19.
The octapeptide repeat region of human prion protein is known to bind four Cu(II) ions per molecule. A peptide, Octa(4), representing this region was tested for inhibitory effects on copper-catalyzed oxidation of l-ascorbate or glutathione and on generation of OH(*) during the former reaction. The result indicated that the catalytic activity of the first Cu(II) ion bound to an Octa(4) molecule was completely suppressed. The valence state of the copper under reducing conditions was Cu(II), as determined by a newly developed method using bathocuproinedisulfonate under acidic conditions. Furthermore, it was shown that Escherichia coli cells expressing the octapeptide repeat region were significantly resistant to copper treatment compared with control cells. The results taken together indicate that prion protein can function to sequester copper ions in the redox-inactive state, rendering copper-induced generation of reactive oxygen species impossible.  相似文献   

20.
BACKGROUND: When a cell is infected with scrapie prions, newly synthesized molecules of the prion protein PrP(C) are expressed at the cell surface and may subsequently be converted to the abnormal form PrP(Sc). In an experimental scrapie infection of an animal, the initial innoculum of PrP(Sc) is cleared relatively rapidly, and the subsequent propagation of the infection depends on the ability of infected cells to convert uninfected target cells to stable production of PrP(Sc). The mechanism of such cell-based infection is not understood. RESULTS: We have established a system in dissociated cell culture in which scrapie-infected mouse SMB cells are able to stably convert genetically marked target cells by coculture. After coculture and rigorous removal of SMB cells, the target cells express PrP(Sc) and also incorporate [35S]methionine into PrP(Sc). The extent of conversion was sensitive to the ratio of the two cell types, and conversion by live SMB required 2500-fold less PrP(Sc) than conversion by a cell-free prion preparation. The conversion activity of SMB cells is not detectable in conditioned medium and apparently depends on close proximity or contact, as evidenced by culturing the SMB and target cells on neighboring but separate surfaces. SMB cells were killed by fixation in aldehydes, followed by washing, and were found to retain significant activity at conversion of target cells. CONCLUSIONS: Cell-mediated infection of target cells in this culture system is effective and requires significantly less PrP(Sc) than infection by a prion preparation. Several lines of evidence indicate that it depends on cell contact, in particular, the activity of aldehyde-fixed infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号