首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This represents the first study of nuclear DNA content in alarge sample (135 spp.) from a tropical arboreal genus, in whicha large proportion of the species were examined (42 spp., 31.1%).Somatic chromosome numbers and 4C-DNA values for 51 taxa ofLonchocarpus are reported. All taxa were diploid with 2 n =22,but their DNA content ranged from 1.92 to 2.86 pg 4C nucleus,corresponding to a 48.95% variation in genome size. In the 74collections studied, no correlation was observed between DNAcontent and habitat altitude. Variation in nuclear DNA contentwas analysed at the level of genus, subgenus, section and subsection.Variation in genome size was also studied within some species,either among widely separated populations or among differentintraspecific taxa. Very little variation in genome size wasdetected between populations, subspecies, and varieties of thesame species. The taxonomic implications of variation in nuclearDNA content are discussed.Copyright 2000 Annals of Botany Company Lonchocarpus (Leguminosae), DNA content, chromosome number.  相似文献   

2.
Genome size has been estimated by flow cytometry in 47 populations of 40 species of the tribe Anthemideae (Asteraceae), mainly from Artemisia and other genera of the subtribe Artemisiinae and related taxa. A range of 2C values from 3.54 to 21.22 pg was found. DNA amount per basic chromosome set ranged from 1.77 to 7.70 pg. First genome size estimates are provided for one subtribe, 10 genera, 32 species, and two subspecies. Nuclear DNA amount correlated well with some karyological, physiological and environmental characters, and has been demonstrated as a useful tool in the interpretation of evolutionary relationships within Artemisia and its close relatives.  相似文献   

3.
BACKGROUND AND AIMS: Genome size and chromosome numbers are important cytological characters that significantly influence various organismal traits. However, geographical representation of these data is seriously unbalanced, with tropical and subtropical regions being largely neglected. In the present study, an investigation was made of chromosomal and genome size variation in the majority of Curcuma species from the Indian subcontinent, and an assessment was made of the value of these data for taxonomic purposes. METHODS: Genome size of 161 homogeneously cultivated plant samples classified into 51 taxonomic entities was determined by propidium iodide flow cytometry. Chromosome numbers were counted in actively growing root tips using conventional rapid squash techniques. KEY RESULTS: Six different chromosome counts (2n = 22, 42, 63, >70, 77 and 105) were found, the last two representing new generic records. The 2C-values varied from 1.66 pg in C. vamana to 4.76 pg in C. oligantha, representing a 2.87-fold range. Three groups of taxa with significantly different homoploid genome sizes (Cx-values) and distinct geographical distribution were identified. Five species exhibited intraspecific variation in nuclear DNA content, reaching up to 15.1 % in cultivated C. longa. Chromosome counts and genome sizes of three Curcuma-like species (Hitchenia caulina, Kaempferia scaposa and Paracautleya bhatii) corresponded well with typical hexaploid (2n = 6x = 42) Curcuma spp. CONCLUSIONS: The basic chromosome number in the majority of Indian taxa (belonging to subgenus Curcuma) is x = 7; published counts correspond to 6x, 9x, 11x, 12x and 15x ploidy levels. Only a few species-specific C-values were found, but karyological and/or flow cytometric data may support taxonomic decisions in some species alliances with morphological similarities. Close evolutionary relationships among some cytotypes are suggested based on the similarity in homoploid genome sizes and geographical grouping. A new species combination, Curcuma scaposa (Nimmo) Skornick. & M. Sabu, comb. nov., is proposed.  相似文献   

4.
K P Singh  S N Raina  A K Singh 《Génome》1996,39(5):890-897
The 2C nuclear DNA amounts were determined for 99 accessions, representing 23 Arachis species from 8 of 9 taxonomic sections, and two synthetic amphidiploids. Mean 2C DNA amounts varied by 15.20%, ranging from 10.26 to 11.82 pg, between accessions of Arachis hypogaea (2n = 4x = 40). Nuclear DNA content variation (5.33-5.91 pg) was also detected among Arachis duranensis (2n = 2x = 20) accessions. The intraspecific variation in the two species may have resulted from indirect selection for favourable genome sizes in particular environmental conditions. The accessions belonging to A. hypogaea ssp. hypogaea (mean value 11.27 pg) with longer life cycle had significantly larger mean DNA content than the accessions of A. hypogaea ssp. fastigiata (mean value 10.97 pg). For 20 diploid (2n = 2x = 20) species of the genus, 2C nuclear DNA amounts ranged from approximately 3 to 7 pg. The diploid perennial species of section Arachis have about 12% more DNA than the annual species. Comparisons of DNA amounts show that evolutionary rating is not a reliable guide to DNA amounts in generic sections of the genus; lower DNA values with evolutionary advancement were found in sections Heteranthae and Triseminatae, but the same was not true for sections Arachis and Caulorrhizae. Similarly, there is evidence of significant differences in DNA content between 4 ancient sections (Procumbentes, Erectoides, Rhizomatosae, and Extranervosae) of the genus. The occurrence of genome size plasticity in both A. duranensis and A. hypogaea provides evidence that A. duranensis could be one of the diploid progenitors of A. hypogaea. The DNA content in the two synthetic amphidiploids corresponded to the sum value estimated for parental species. Key words : Arachis species, genome size, Arachis hypogaea, Arachis duranensis, intraspecific variation.  相似文献   

5.
M Torrell  J Vallès 《Génome》2001,44(2):231-238
Genome size was estimated by flow cytometry in 24 populations belonging to 22 Artemisia taxa (21 species, 1 with two subspecies), which represent the distinct subgenera, life forms, basic chromosome numbers, and ploidy levels in the genus. 2C nuclear DNA content values range from 3.5 to 25.65 pg, which represents a more than sevenfold variation. DNA content per haploid genome ranges from 1.75 to 5.76 pg. DNA amount is very well correlated with karyotype length and ploidy level. Some variations in genome size have systematic and evolutionary implications, whereas others are linked to ecological selection pressures.  相似文献   

6.
BACKGROUND AND AIMS: Polyploidization plays an important role in the evolution of many plant genera, including Koeleria. The knowledge of ploidy, chromosome number and genome size may enable correct taxonomic treatment when other features are insufficient as in Koeleria. Therefore, these characteristics and their variability were determined for populations of six central European Koeleria taxa. METHODS: Chromosome number analysis was performed by squashing root meristems, and ploidy and 2C nuclear DNA content were estimated by flow cytometry. KEY RESULTS: Three diploids (K. glauca, K. macrantha var. macrantha and var. pseudoglauca), one tetraploid (K. macrantha var. majoriflora), one decaploid (K. pyramidata) and one dodecaploid (K. tristis) were found. The 2C nuclear DNA content of the diploids ranged from 4.85 to 5.20 pg. The 2C DNA contents of tetraploid, decaploid and dodecaploid taxa were 9.31 pg, 22.89 pg and 29.23 pg, respectively. The DNA content of polyploids within the K. macrantha aggregate (i.e. within K. macrantha and K. pyramidata) was smaller than the expected multiple of the diploid genome (K. macrantha var. macrantha). Geography-correlated variation of DNA content was found for some taxa. Czech populations of K. macrantha var. majoriflora had a 5.06% smaller genome than the Slovak ones. An isolated eastern Slovakian population of K. tristis revealed 8.04% less DNA than populations from central Slovakia. In central and north-west Bohemia, diploid and tetraploid cytotypes of K. macrantha were sympatric; east from this region diploid populations, and towards the west tetraploid populations were dominant. CONCLUSIONS: Remarkable intra-specific inter-population differences in nuclear DNA content were found between Bohemian and Pannonian populations of Koeleria macrantha var. majoriflora and between geographically isolated central and eastern Slovakian populations of K. tristis. These differences occur over a relatively small geographical scale.  相似文献   

7.
The nuclear DNA content of 28 taxa of Musa was assessed by flow cytometry, using line PxPC6 of Petunia hybrida as an internal standard. The 2C DNA value of Musa balbisiana (BB genome) was 1.16 pg, whereas Musa acuminata (AA genome) had an average 2C DNA value of 1.27 pg, with a difference of 11% between its subspecies. The two haploid (IC) genomes, A and B, comprising most of the edible bananas, are therefore of similar size, 0.63 pg (610 million bp) and 0.58 pg (560 million bp), respectively. The genome of diploid Musa is thus threefold that of Arabidopsis thaliana. The genome sizes in a set of triploid Musa cultivars or clones were quite different, with 2C DNA values ranging from 1.61 to 2.23 pg. Likewise, the genome sizes of tetraploid cultivars ranged from 1.94 to 2.37 pg (2C). Apparently, tetraploids (for instance, accession I.C.2) can have a genome size that falls within the range of triploid genome sizes, and vice versa (as in the case of accession Simili Radjah). The 2C values estimated for organs such as leaf, leaf sheath, rhizome, and flower were consistent, whereas root material gave atypical results, owing to browning. The genomic base composition of these Musa taxa had a median value of 40.8% GC (SD = 0.43%).  相似文献   

8.
Evolution of genome size in Brassicaceae   总被引:25,自引:0,他引:25  
BACKGROUND AND AIMS: Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0.16 pg < 1C < 1.95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use this as a template to examine genome size evolution in Brassicaceae. METHODS: DNA contents were determined by flow cytometry and chromosomes were counted for 34 species of the family Brassicaceae and for ten Arabidopsis thaliana ecotypes. The amplified and sequenced ITS region for 23 taxa (plus six other taxa with known ITS sequences) were aligned and used to infer evolutionary relationship by parsimony analysis. KEY RESULTS: DNA content in the species studied ranged over 8-fold (1C = 0.16-1.31 pg), and 4.4-fold (1C = 0.16-0.71 pg) excluding allotetraploid Brassica species. The 1C DNA contents of ten Arabidopsis thaliana ecotypes showed little variation, ranging from 0.16 pg to 0.17 pg. CONCLUSIONS: The tree roots at an ancestral genome size of approximately 1x = 0.2 pg. Arabidopsis thaliana (1C = 0.16 pg; approximately 157 Mbp) has the smallest genome size in Brassicaceae studied here and apparently represents an evolutionary decrease in genome size. Two other branches that represent probable evolutionary decreases in genome size terminate in Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies.  相似文献   

9.
The chromosome numbers are given for 20 angiosperm taxa, most of which grow predominately or exclusively on serpentine in Greece, and the karyotype morphology is illustrated in all cases but one. Chromosome data are provided for the first time for ten taxa ( Alyssum pogonocarpum, Centaurea charrellii, C. vlachorum, Cephalaria fanourii, Matricaria tempskyana, Onosma stridii, Scorzonera doriae, Silene fabarioides, S. salamandra, Trinia glauca ssp. pindica ) and for the endemic monospecific genus Leptoplax . A new number is reported for Thymus teucrioides ssp. candilicus . An unexpected dysploid number is recorded for a population of Leontodon hispidus ssp. hispidus. Chromosome number and karyotype details from Greek populations are presented for the rest of the taxa. Chromosomal evidence supports close relationships among members of Onosma subsect. Asterotricha . The unusual chromosome number of Centaurea vlachorum supports its placement either in C. sect. Jacea or C . sect. Cyanus . The evolution of taxa in sections Vierhapperia, Pulvinares , and Nervosae of Scorzonera appears to be connected with particular chromosomal rearrangements and dysploidy. Leptoplax does not share the same chromosome number with Peltaria but with Bornmuellera instead, something that facilitates infrageneric hybridization. Further issues of taxonomy, distribution, evolution and conservation of serpentine species are briefly discussed where appropriate. © 2002 The Linnean Society of London , Botanical Journal of the Linnean Society , 2002, 139 , 109–124.  相似文献   

10.
Nuclear DNA content and genomic distributions of 5S and 45S rDNA were examined in nineteen diploid accessions of the genus Musa representing its four sections Eumusa, Rhodochlamys, Callimusa and Australimusa, and in Ensete gilletii, which was the outgroup in this study. In the Eumusa (x = 11), 2C DNA content ranged from 1.130 to 1.377 pg, M. balbisiana having the lowest DNA content of all sections. M. beccarii (x = 9), a representative of Callimusa, had the highest 2C nuclear DNA content (1.561 pg). Species belonging to Rhodochlamys (x = 11) and Australimusa (x = 10) had 2C DNA contents ranging from 1.191 to 1.299 pg and from 1.435 to 1.547 pg, respectively. E. gilletii (x = 9) had 2C DNA content of 1.210 pg. The number of 5S rDNA loci in Musa varied from 4 to 8 per diploid cell. While different numbers of 5S rDNA loci were observed within Eumusa and Rhodochlamys, four 5S rDNA loci were observed in all accessions of Australimusa. M. beccarii (Callimusa) and E. gilletii contained 5S rRNA gene clusters on five and six chromosomes, respectively. The number of 45S rDNA loci was conserved within individual sections. Hierarchical cluster analysis of genome size, number of chromosomes and 45S rDNA sites suggested a close relationship between Rhodochlamys and Eumusa; Australimusa was clearly separated as were M. beccarii and E. gilletii. Within the Eumusa-Rhodochlamys group, M. balbisiana, M. schizocarpa and M. ornata formed distinct subgroups, clearly separated from the accessions of M. acuminata, M. mannii, M. laterita and M. velutina, which formed a tight subgroup. The results expand the knowledge of genome size and genomic distribution of ribosomal DNA in Musa and Ensete. They aid in clarification of the taxonomical classification of Musa and show a need to supplement the analyses on the DNA sequence level with cytogenetic studies.  相似文献   

11.
The present communication deals with 2C nuclear genome size variation in a fairly small genus Guizotia. Twenty-four accessions belonging to six species, out of seven known, were analysed in order to elucidate the extent of DNA variation both at an intra—as well as interspecific level. At the intraspecific level none of the species exhibited significant differences in their genome size. Between the species, the 2C DNA amounts ranged from 3.61 pg in G. reptans to 11.37 pg in G. zavattarii; over three-fold DNA variation is evident. Apparently these interspecific DNA differences have been achieved independent of the numerical chromosomal change(s), as all the Guizotias share a common chromosome number 2n=2x=30. The cultivated oilseed crop, G. abyssinica (7.57 pg), has accommodated nearly 78% extra DNA in its chromosome complement during the evolutionary time scale of its origin and domestication from the wild progenitor G. schimperi (4.25 pg). The extent of genomic DNA difference(s) between the species has been discussed in the light of their interrelationships and diversity.  相似文献   

12.
13.
Matsuba C  Merilä J 《Hereditas》2006,143(2006):155-158
Genome size variation in the common frog (Rana temporaria) was investigated with flow cytometry in three latitudinally separated populations in Sweden to see whether it could provide a useful tool for sex-identification in this species. Depending on the sex and population, per cell DNA content (2C value) varied from 8.823 to 11.266 pg with a mean (+/- SE) 2C value of 9.961+/-0.083 pg. Analysis of variance revealed significant differences in genome size among populations and between sexes. Females had ca 3% larger genomes (x=10.133+/-0.068 pg) than males (x=9.832+/-0.068 pg) in all of the populations (sex x population interaction: P>0.10). Individuals from the southern-most population had significantly (x=9.330+/-0.081 pg) smaller genomes than those from the more northern populations (x=10.032+/-0.085 and x=10.584+/-0.085 pg, respectively). These results are in line with the interpretation that males in the common frog are the heterogametic sex, and that there exists large (up to 12%) geographic variation in genome size in this species. However, the sex differences in the genome size are too small to be useful in individual sex identification.  相似文献   

14.
BACKGROUND AND AIMS: Plant genome size is an important biological characteristic, with relationships to systematics, ecology and distribution. Currently, there is no information regarding nuclear DNA content for any Carthamus species. In addition to improving the knowledge base, this research focuses on interspecific variation and its implications for the infrageneric classification of this genus. Genome size variation in the process of allopolyploid formation is also addressed. METHODS: Nuclear DNA samples from 34 populations of 16 species of the genus Carthamus were assessed by flow cytometry using propidium iodide. KEY RESULTS: The 2C values ranged from 2.26 pg for C. leucocaulos to 7.46 pg for C. turkestanicus, and monoploid genome size (1Cx-value) ranged from 1.13 pg in C. leucocaulos to 1.53 pg in C. alexandrinus. Mean genome sizes differed significantly, based on sectional classification. Both allopolyploid species (C. creticus and C. turkestanicus) exhibited nuclear DNA contents in accordance with the sum of the putative parental C-values (in one case with a slight reduction, frequent in polyploids), supporting their hybrid origin. CONCLUSIONS: Genome size represents a useful tool in elucidating systematic relationships between closely related species. A considerable reduction in monoploid genome size, possibly due to the hybrid formation, is also reported within these taxa.  相似文献   

15.
Chromosomes and nuclear DNA amount were analyzed in leaf tissues of Luzula nivea, Luzula luzuloides, and Luzula multiflora. Intra- and interspecific karyological variability was stated. Chromosome numbers in diploids ranged 2n = 8-24 in L. nivea and L. luzuloides and 2n = 12-84 in hexaploid L. multiflora. Karyological variability resulted mainly from chromosome fission (agmatoploidy) and aneusomaty; chromosome fusion (symploidy) and polyploidy were also involved. Flow cytometric determination of nuclear genome size using propidium iodide staining gave values of 1.584 pg in L. luzuloides, 1.566 pg in L. nivea, and 3.034 pg in L. multiflora. Variability in relative nuclear genome size within species was measured by 4',6-diamidino-2-phenylindole staining. In contrast with previous reports, variability was fairly small and ranged from 1.796 to 1.864 pg in L. luzuloides, from 1.783 to 1.847 pg and from 1.737 to 1.808 pg in two populations (S and F) of L. nivea, respectively, and from 3.125 to 3.271 pg in L. multiflora. An intraplant (interleaf) genome size variation was also observed and its possible causes are discussed.  相似文献   

16.
Summary The nuclear DNA amount and the heterochromatin content in species and hybrids of Zea were analyzed in telophase nuclei (2C) of the root apex of germinating seeds. The results revealed significant differences among taxa and also among lines and races of maize. The hybrids between Z. mays ssp. mays x Z. mays ssp. mexicana (2n=20), Z. diploperennis x Z. perennis (2n=30), and Z. diploperennis x Z.perennis (2n=40) showed DNA content intermediate between that of the parents. The number of chromosomal C-bands and the proportion of the genome comprising C-band heterochromatin were positively related to genome size. In the different lines and races of maize studied, there was a positive correlation between genome size and the interval from germination to flowering. Octoploid Z. perennis (2n=40) showed the smallest DNA content per basic genome and the smallest heterochromatic blocks, suggesting that the DNA lost by this species consisted mainly of repetitive sequences. Considering that the extant species of Zea are tetraploid (2n=20) and octoploid (2n=40) and that the ancestral diploids are extinct, any consideration of the direction (increase or decrease) of the DNA change would be entirely speculative. The extant species could be the product of natural and artificial selection acting on different genotypic and nucleotypical constitutions at the diploid and/or tetraploid levels.  相似文献   

17.
Genome size has been estimated by flow cytometry in 14 populations belonging to eight taxa (seven species, one of them with two varieties) of the genus Tripleurospermum. 2C nuclear DNA amounts range from 4.87 to 9.22 pg, and nuclear DNA amounts per basic chromosome set from 1.99 to 2.75 pg. Statistically significant differences depending on ploidy level, life cycle or environmental factors such as altitude have been found. Also, genome size is positively correlated with total karyotype length. The presence of rhizome is related to nuclear DNA content in these species.This work was supported by project BOS2001-3041-C02-01 of the Spanish government, and one of the authors (S.G.) received a predoctoral grant from the Spanish government.  相似文献   

18.
Lycopersicon esculentum (tomato) has a small genome (2C = 1.90 pg of DNA) packaged in 2n = 2x = 24 small acrocentric to metacentric chromosomes. Like the chromosomes of other members of the family Solanaceae, tomato chromosomes have pericentromeric heterochromatin. To determine the fraction of the tomato genome found in euchromatin versus heterochromatin, we stained pachytene chromosomes from primary microsporocytes with Feulgen and analyzed them by densitometry and image analysis. In association with previously published synaptonemal complex karyotype data for tomato, our results indicate that 77% of the tomato microsporocyte genome is located in heterochromatin and 23% is found in euchromatin. If heterochromatin is assumed to contain few active genes, then the functional genes of the tomato must be concentrated in an effective genome of only 0.22 pg of DNA (1C = 0.95 pg x 0.23 = 0.22 pg). The physical segregation of euchromatin and heterochromatin in tomato chromosomes coupled with the small effective genome size suggests that tomato may be a more useful subject for chromosome walking and gene mapping studies than would be predicted based on its genome size alone. Key words : tomato, Lycopersicon esculentum, genome size, heterochromatin, euchromatin, pachytene chromosomes, synaptonemal complex.  相似文献   

19.
The subgenus Ceratochloa of the genus Bromus includes a number of closely related allopolyploid forms or species that present a difficult taxonomic problem. The present work combines data concerning chromosome length, heterochromatin distribution and nuclear genome size of different 6x, 8x and 12x accessions in this subgenus. Special attention is paid to the karyotype structure and genomic constitution of duodecaploid plants recently found in South America. Hexaploid lineages possess six almost indistinguishable genomes and a nuclear DNA content between 12.72 pg and 15.10 pg (mean 1Cx value = 2.32 pg), whereas octoploid lineages contain the same six genomes (AABBCC) plus two that are characterized by longer chromosomes and a greater DNA content (1Cx = 4.47 pg). Two duodecaploid accessions found in South America resemble each other and apparently differ from the North American duodecaploid B. arizonicus as regards chromosome size and nuclear DNA content (40.00 and 40.50 pg vs. 27.59 pg). These observations suggest that the South American duodecaploids represent a separate evolutionary lineage of the B. subgenus Ceratochloa, unrecognized heretofore.  相似文献   

20.
Nuclear DNA amount of five species ofCelosia ranging from 2x to 12x varies from 3.26 (2x) to 9.70pg (12x). The diploidC. trigyna has twice as much DNA/basic genome as other taxa, which is commensurate with its taxonomic position and genetic isolation. There is insignificant variation in DNA/basic genome among 4x, 8x, and 12x taxa. Therefore, DNA/nucleus shows a strong positive correlation with ploidy level. The different accessions of 4x taxa show constancy of DNA amounts. There is no correlation of seed weight with DNA amount.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号