首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bombesin and the related mammalian peptides, such as gastrin-releasing peptide (GRP), are potent mitogens for some fibroblast cell lines. Here we have examined the bombesin- and GRP-mediated changes in the phosphorylation of proteins in Swiss 3T3 cells and compared these to the events observed after platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and tumor promoter treatment. In agreement with previous reports, bombesin, GRP and PDGF, but not EGF, increased the activity of protein kinase C. This was assayed by an inhibition of [125I]EGF binding, stimulation in phosphorylation of pp60c-src on serine 12 and stimulation in phosphorylation of a group of 80 kd proteins. The different phosphorylated forms of the 80 kd proteins were examined by tryptic peptide mapping and shown to contain multiple phosphorylation sites. An investigation of the tyrosine phosphorylation events following mitogen treatment revealed a significant difference between PDGF and the bombesin peptides. PDGF treatment caused a marked increase in total cellular phosphotyrosine levels, and tyrosine phosphorylation both of known substrates and its own receptor. In contrast, bombesin and GRP treatments resulted in only a weak or undetectable increase in tyrosine phosphorylation of total cellular protein or known substrates. In this respect bombesin and GRP were more similar to EGF. The fact that the bombesin peptides do not induce a phosphorylation response identical with either PDGF or EGF suggests that there is not a single common signal pathway which is activated by all these mitogens.  相似文献   

2.
Gastrin-releasing peptide (GRP) is a neuroendocrine hormone that may be involved in the pathophysiology of small cell lung carcinoma. We describe carboxylterminal peptide analogues of GRP and bombesin, a 14-residue amphibian homologue, that were modeled after the antagonist [Leu13-psi(CH2NH)-Leu14]bombesin and retained the psi bond. Three novel peptides contained a Leu insertion amino to the psi bond, i.e. ... Leu13Leu14 psi X (residues numbered after bombesin) where X = LeuNH2 or norleucine-NH2). The Leu-insertion analogues behaved as pure partial agonists/antagonists when examined for the ability to stimulate [3H]thymidine incorporation into quiescent Swiss 3T3 cells (agonist activity) and to diminish the agonist response of GRP (antagonist activity). A time course of [3H]thymidine incorporation into quiescent cells indicated maximal incorporation at 20-h post-peptide addition for bombesin and GRP and a Leu-insertion peptide, but the extent of the incorporation for the Leu-insertion peptide was half that of GRP and bombesin. The agonist dose responses of the Leu-insertion peptides (EC50 values of 1-10 nM) paralleled GRP and bombesin, but the maximal response of the Leu-insertion peptides, even at concentrations as high as 10(-4) M, was half the maximal value of GRP or bombesin. High concentrations of the Leu-insertion peptides antagonized 10 nM GRP (a concentration that produced a near-maximal GRP response) yielding a response that was half the maximal value of GRP and equivalent to the maximal response of the Leu-insertion peptides alone. Analogues of the form ... Leu13 psi X behaved as complete antagonists. The KD values of the Leu-insertion peptides for competitive binding versus 125I-GRP (2-50 nM) were as potent as parent ... Leu14 agonists. Stability studies indicated that peptide potencies for both agonist and antagonist activities diminished upon peptide incubation in medium or on cells. The results suggested that, for the Leu-insertion peptides, degradation into distinct products with different activities was not responsible for their partial agonist/antagonist behavior. Computer-generated molecular modeling studies indicated that the novel structures could adopt energy minimized conformations for either an agonist or an antagonist as proposed earlier (Coy, D.H., Heinz-Erian, P., Jiang, N.-Y., Sasaki, Y., Taylor, J., Moreau, J.-P., Wolfrey, W.T., Gardner, J.D., and Jensen, R. T. (1988) J. Biol. Chem. 263, 5056-5060).  相似文献   

3.
Purification of the gastrin-releasing peptide (GRP) or bombesin receptor has proved elusive in part due to technical difficulties. In the present studies, the problem of oxidized radioligand was avoided by the use of 125I-GRP, which was verified to be not oxidized by high performance liquid chromatography. Specific 125I-GRP binding (at 0 degrees C) to intact human small cell lung carcinoma NCI-H345 cells which had been subjected to a dilute acid wash was 6 fmol/10(6) cells. Inhibition of GRP degradation by human H345 cell membranes through the use of phenanthroline or phosphoramidon permitted the development of binding assays for the GRP receptor in detergent-solubilized crude membrane preparations. The solubilized GRP receptor exhibited saturable, high affinity (KD = 1.3 nM), temperature-dependent specific binding averaging 402 +/- 65 fmol/mg protein (mean +/- S.E. for eight separate membrane preparations with 125I-GRP concentration = 3 nM), with a Bmax = 434 fmol/mg protein using a gel filtration binding assay. That the GRP receptor had been solubilized was demonstrated by its failure to pellet when centrifuged at 100,000 x g for 60 min, its passage through a 0.22-micron filter without loss of binding activity, and its elution in the void volume of a Sephadex G-50 gel filtration column, but within the inclusion volume of a Sephacryl S-200 column (Ve/V0 = 1.1). Isolation of the GRP receptor from human H345 cell-solubilized membranes was achieved by ligand affinity chromatography. A unique 70-kDa band on silver-stained reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis was reproducibly eluted from GRP14-27 affinity columns by an acidic high salt buffer, but binding activity was denatured by these conditions. The protein nature of the GRP receptor was demonstrated by its sensitivity to proteases after isolation. In addition, two unique bands of 65 and 70 kDa were eluted from the GRP14-27 affinity column with GRP14-27 in neutral buffer, and this eluate possessed specific 125I-GRP binding with a stoichiometry of approximately 1:1. Thus, reported here is the isolation of a functional membrane-associated, saturable, high affinity GRP receptor with temperature-dependent binding from the solubilized membranes of human H345 cells.  相似文献   

4.
5.
We have previously identified by chemical cross-linking a cell surface protein in Swiss 3T3 cells of apparent Mr 75,000-85,000, which may represent a major component of the receptor for peptides of the bombesin family in these cells. Because bombesin-like peptides may interact with other cell surface molecules, it was important to establish the correlation between receptor binding and functions of this complex and further characterize the Mr 75,000-85,000 cross-linked protein. Detailed time courses carried out at different temperatures demonstrated that the Mr 75,000-85,000 affinity-labelled band was the earliest cross-linked complex detected in Swiss 3T3 cells incubated with 125I-labelled gastrin-releasing peptide (125I-GRP). Furthermore, the ability of various nonradioactive bombesin agonists and antagonists to block the formation of the Mr 75,000-85,000 cross-linked complex correlated extremely well (r = 0.994) with the relative capacity of these peptides to inhibit 125I-GRP specific binding. Pretreatment with unlabelled GRP for up to 6 h caused only a slight decrease in both specific 125I-GRP binding and the affinity labelling of the Mr 75,000-85,000 protein. We also show that the cross-linked complex is a glycoprotein. First, solubilized affinity labelled Mr 75,000-85,000 complex applied to wheat germ lectin-sepharose columns was eluted by addition of 0.3 M N-acetyl-D-glucosamine. Second, treatment with endo-beta-N-acetylglucosaminidase F reduced the apparent molecular weight of the affinity-labelled band from 75,000-85,000 to 43,000, indicating the presence of N-linked oligosaccharide groups.  相似文献   

6.
7.
The synthetic peptide [D-Arg1,D-Pro2,D-Trp7,9,Leu1]substance P inhibits the stimulation of DNA synthesis induced in Swiss 3T3 cells by bombesin or vasopressin, but not that induced by a wide range of other growth factors and mitogens. The stimulation induced by 10 pM-3 nM-bombesin is inhibited by 1-30 microM-antagonist in a manner consistent with competition at the bombesin receptor. The inhibition by the antagonist of the stimulation induced by vasopressin suggests a previously unrecognized interaction of the antagonist with vasopressin receptors. The antagonist should be useful in studies of cell proliferation both in vivo and in vitro.  相似文献   

8.
The cross-linking agent ethylene glycol-bis(succinimidyl succinate) was used to covalently link 125I-labeled gastrin releasing peptide (125I-GRP) to an Mr 75,000-85,000 surface protein in Swiss 3T3 cells that displays many characteristics of a specific receptor for peptides of the bombesin family. This protein was not present in other cell lines which do not exhibit receptors for bombesin-like peptides. Unlabeled GRP competed for affinity labeling of the Mr 75,000-85,000 protein in a concentration-dependent manner, and other bombesin-related peptides also inhibited the cross-linking of 125I-GRP to this component. In contrast, high concentrations of a variety of other peptide hormones and mitogens had no effect. Affinity labeling of the Mr 75,000-85,000 protein was dependent on the concentration of 125I-GRP and exhibited saturability. 125I-GRP affinity labeling of this protein was also demonstrated by two-dimensional gel electrophoresis. These studies suggest that an Mr 75,000-85,000 surface protein with an isoelectric point of 6.0 to 6.5 is a major component of the receptor for peptides of the bombesin family in Swiss 3T3 cells.  相似文献   

9.
The development of a biotinylated bombesin/gastrin-releasing peptide (GRP) for use as a receptor probe is reported. The lysine13 of a GRP-27 was substituted by arginine and lysine was added to the amino terminus. Biotinylation of the N-terminal lysine was performed. The biotinylated peptide was purified by HPLC and characterized by mass spectral analysis. Binding studies with murine Swiss 3T3 fibroblasts, cells known to express bombesin/GRP receptors, yielded a dissociation curve for the biotinylated GRP-27 analogue (biotin-Lysyl[Asp12,Arg13]GRP-27) which was nearly identical to that of native GRP. Using studies of gastrin release from isolated canine G cells, equipotent functional activity of the biotinylated probe and unmodified GRP was demonstrated. Measurements of retained 125I-avidin confirmed that the biotin/avidin interaction could occur once the biotin-peptide complex was bound. Applicability of the probe was demonstrated with fluorescent microscopy using avidin-FITC on Swiss 3T3 fibroblasts. In conclusion, a novel biotinylated bombesin/GRP analogue has been developed which retains the functional characteristics of the native peptide and is a useful probe for receptor studies.  相似文献   

10.
Prolonged exposure (40 h) of Swiss 3T3 cells to bombesin induced homologous desensitization to bombesin and structurally related peptides including mammalian gastrin releasing peptide (GRP). The ability of bombesin to mobilize intracellular Ca2+, inhibit epidermal growth factor binding, and stimulate DNA synthesis was profoundly and selectively inhibited. In contrast, Ca2+ mobilization by either vasopressin or bradykinin was unaffected, indicating that chronic desensitization is mechanistically distinct from acute desensitization of Ca2+ mobilization. Prolonged (24 or 40 h) pretreatment with bombesin also induced a 78 +/- 5% loss of bombesin receptor binding sites in both intact and plasma membrane preparations of Swiss 3T3 cells without an apparent change in receptor affinity (Kd = 1.9 +/- 0.1 x 10(-9) M and Kd = 1.8 +/- 0.2 x 10(-9) M for control and pretreated cells, respectively). Loss of 125I-GRP binding was slow and progressive with half-maximal loss of binding occurring after 7 h and maximal after approximately 14 h. Cross-linking of 125I-GRP to intact cultures and membrane preparations revealed an identical time-dependent loss of the Mr = 75,000-85,000 cross-linked band, previously identified as the bombesin receptor. Prolonged exposure of the cells to phorbol 12,13-dibutyrate, epidermal growth factor, cholera toxin, or mitogenic combinations of these agents did not alter 125I-GRP binding. Receptor down-regulation and loss of mitogenic responsiveness to bombesin were: (a) induced in a parallel dose-dependent manner by bombesin (ED50 = 1 nM), GRP (ED50 = 2 nM), and neuromedin B (ED50 = 20 nM), but not by the biologically inactive fragment GRP (1-16); (b) inhibited by the specific bombesin antagonist [Leu13-psi(CH2NH)-Leu14] bombesin, and (c) reversed upon removal of bombesin with a similar time course (full recovery after 15 h). On the basis of these observations, we propose that prolonged pretreatment of Swiss 3T3 cells with bombesin induces homologous desensitization to peptides of the bombesin family by down-regulation of cell surface bombesin receptors.  相似文献   

11.
The binding of [125I]gastrin releasing peptide ([125I]GRP) to Swiss 3T3 cells at 37 degrees C increases rapidly, reaching a maximum after 30 min and decreasing afterwards. The decrease in cell-associated radioactivity at this temperature is accompanied by extensive degradation of the labelled peptide. At 4 degrees C equilibrium binding is achieved after 6 h and [125I]GRP degradation is markedly inhibited. Extraction of surface-bound ligand at low pH demonstrates that the iodinated peptide is internalized within minutes after addition to 3T3 cells at 37 degrees C. The rate of internalization is strikingly temperature-dependent and is virtually abolished at 4 degrees C. In addition, lysomotropic agents including chloroquine increase the cell-associated radioactivity in cells incubated with [125I]GRP. The binding of [125I]GRP to Swiss 3T3 cells was not affected by pretreatment for up to 24 h with either GRP or bombesin at mitogenic concentrations. Furthermore, pretreatment with GRP did not reduce the affinity labelling of a Mr 75,000-85,000 surface protein recently identified as a putative receptor for bombesin-like peptides. These results demonstrate that while peptides of the bombesin family are rapidly internalized and degraded by Swiss 3T3 cells, the cell surface receptors for these molecules are not down-regulated.  相似文献   

12.
Recently we have identified a mitogen-activated S6 kinase from Swiss 3T3 cells (Jen?, P., Ballou, L. M., Novak-Hofer, I., and Thomas, G. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 406-410). Here we describe the detailed purification of this enzyme from high-speed supernatants (400,000 x g) of vanadate-treated cell extracts. The enzyme is purified through six sequential steps including cation- and anion-exchange, sizing, and affinity chromatography. At each step, the enzyme behaves as one entity and, on the final step of purification, is revealed on silver-stained sodium dodecyl sulfate-polyacrylamide gels as a single protein of Mr 70,000. As reported earlier, the overall purification factor is 3,000-fold, and the specific activity of the homogeneously purified enzyme is 0.6 mumol/min/mg of protein. However, recovery of total activity is only 0.2%. This large loss of activity appears to be due to freeze-thawing the enzyme between each step of purification. The purified kinase does not phosphorylate casein, histones 2A and 3S, or phosvitin. It has a Km for ATP of 28 microM and a broad optimum for Mg2+ between 5 and 20 mM. Mn2+ does not affect the basal level of kinase activity, and at concentrations as low as 1 mM, it completely suppresses the effect of 20 mM Mg2+ on kinase activity. The relationship of this enzyme to two other purified S6 kinases is discussed.  相似文献   

13.
Bombesin, a peptide mitogen for a variety of cell types, acts as a typical Ca2+-mobilizing hormone in Swiss 3T3 fibroblasts. At its mitogenic concentrations (1-25 nM), bombesin stimulates polyphosphoinositide turnover, i.e. breakdown of phosphatidylinositol 4,5-bisphosphate and a concomitant increase in inositol phosphates in a time- and dose-dependent manner. In particular, bombesin induces an initial transient increase in inositol 1,4,5-trisphosphate concentration, followed by an increase in the concentration of inositol 1,3,4-trisphosphate. Also, within 30 s of bombesin addition, the mass of 1,2-diacylglycerol nearly doubles and remains at this level for up to 60 min. Intracellular [Ca2+] measurements with a photoprotein, aequorin, demonstrate that bombesin stimulates a transient rise in cytosolic free Ca2+ concentration. A mobilization of Ca2+ from an intracellular pool is observed as a dose-dependent, transient increase in 45Ca2+ efflux from prelabeled cells, both in the presence and absence of extracellular Ca2+. Bombesin also induces a sustained increase in Ca2+ influx rate and stimulates 3-O-methyl-D-glucose transport across the plasma membrane. These composite results indicate that the mitogenic effect of bombesin is mediated through an activation of the Ca2+ messenger system.  相似文献   

14.
15.
The pseudopeptide [Leu13-psi(CH2NH)Leu14]bombesin blocks bombesin-stimulated mitogenesis in Swiss 3T3 cells in a competitive and reversible manner, but not that of other mitogens. It inhibits the mobilization of intracellular Ca2+ and activation of protein kinase C by bombesin-like peptides. It acts at receptor level, as shown by inhibition of [125I]GRP binding and reduction in cross-linking of the Mr 75-85,000 receptor-associated protein. Thus [Leu13-psi(CH2NH)Leu14]bombesin is a specific bombesin receptor antagonist in Swiss 3T3 cells which blocks long-term growth promoting effects of bombesin-like peptides.  相似文献   

16.
Bombesin and bombesin-related peptides such as gastrin-releasing peptide (GRP) stimulate DNA synthesis and proliferation of Swiss 3T3 cells in culture. We have used 125I-labelled [Tyr4]bombesin and 125I-labelled GRP to characterize and identify the receptors for these peptides on Swiss 3T3 cells. The binding of 125I-[Tyr4]bombesin, which retained full biological activity, was maximal between 20 and 30 min incubation at 37 degrees C, after which continued incubation led to a decline in cell-associated radioactivity. This decline was markedly slowed by the presence of lysosomal enzyme inhibitors. Specificity of the binding site was indicated by the competitive inhibition of binding by bombesin-related peptides, but not by unrelated peptides and growth factors. Scatchard analysis of binding data indicated a single class of high-affinity receptors. The calculated value for the dissociation constant (Kd) was 2.1 nM and each cell possesses approx. 240,000 receptors. Because [Tyr4]bombesin has no free amino group, 125I-GRP was used in chemical cross-linking studies. When disuccinimidyl suberate was used to covalently couple 125I-GRP to the cells, two major radiolabelled complexes were detected with molecular masses of approx. 80,000-85,000 and 140,000. The binding of 125I-[Tyr4]bombesin to the cells was pH-dependent with maximal binding at pH 6.5-7.5 and effectively no specific binding at pH values below 4.5. At 37 degrees C, cell-associated 125I-[Tyr4]bombesin quickly became resistant to removal by acidic buffers, suggesting its rapid transfer to an intracellular compartment. However, pre-incubation with unlabelled [Tyr4]bombesin did not induce down-regulation of bombesin receptors as measured by the subsequent binding of 125I-[Tyr4]bombesin. In contrast with the Swiss 3T3 cells, specific binding of 125I-[Tyr4]bombesin was not detectable in two cell lines which are biologically unresponsive to bombesin-related peptides.  相似文献   

17.
Bombesin and structurally related peptides including gastrin releasing peptide (GRP) are potent mitogens for Swiss 3T3 cells. Here we attempted to solubilize bombesin receptors under conditions in which the ligand (125I-labelled GRP) was prebound to the receptor prior to detergent extraction. We found that 125I-GRP-receptor complexes were solubilized from Swiss 3T3 cell membranes by using the detergents taurodeoxycholate or deoxycholate. These detergents promoted ligand-receptor solubilization in a dose-dependent manner. In contrast, a variety of other detergents including Triton X-100, octylglycoside, CHAPS, digitonin, cholic acid and n-dodecyl-beta-D-maltoside, were much less effective. Addition of guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) to ligand-receptor complexes isolated by gel filtration enhanced the rate of ligand dissociation in a concentration-dependent and nucleotide-specific manner. Our results demonstrate for the first time the successful solubilization of 125I-GRP-receptor complexes from Swiss 3T3 cell membranes and provide evidence for the physical association between the ligand-receptor complex and a guanine nucleotide binding protein(s).  相似文献   

18.
Addition of gastrin releasing peptide to serum-starved Swiss 3T3 mouse fibroblasts results in a transient appearance of a myelin basic protein-kinase activity in cytosolic extracts. Increased kinase activity is also observed upon stimulation of cells with bradykinin, epidermal growth factor or 4 beta-phorbol dibutyrate. Chromatographic analysis of the cytosolic extracts show that both gastrin-releasing peptide and 4 beta-phorbol dibutyrate induce the appearance of a kinase activity similar to that induced by epidermal growth factor. The response to gastrin-releasing peptide is abolished by down-regulation of protein kinase C and attenuated by acute inhibition of protein kinase C using staurosporine. The effect of epidermal growth factor was also suppressed under these conditions, albeit to a lesser extent. The results indicate (1) that activation of myelin basic protein kinase(s) may be common to different growth factors, and (2) that protein kinase C may participate in this response, at least in the case of gastrin-releasing peptide.  相似文献   

19.
The receptor for the neuropeptide gastrin-releasing peptide, the mammalian homologue of bombesin, was solubilized from rat brain and Swiss 3T3 cells by using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) and the cholesteryl hemisuccinate ester (CHS). Only the combination of the detergent CHAPS and the cholesteryl ester CHS in a glycerol-containing buffer satisfactorily preserved the binding activity upon solubilization. Specific binding activity was only solubilized from cell lines and tissue preparations known to express the GRP receptor. The dissociation constant (Kd) for the receptor solubilized from rat brain and Swiss 3T3 cells was 0.6 nM, similar to the value of 0.8 nM calculated for the membrane-bound receptor. Binding was saturable and reached equilibrium after approximately 2 h at 4 degrees C. The identity of the solubilized receptor with the membrane-bound one was further confirmed by the concordance of the relative binding affinities of various established bombesin analogues.  相似文献   

20.
The high inhibitory potency of the previously developed bombesin antagonist [Leu13, psi CH2NHLeu14]bombesin (analogue I) (IC50 values of 30 and 18 nM for inhibition of bombesin-stimulated amylase secretion from guinea pig acinar cells and Swiss 3T3 cell growth, respectively) diminished considerably when shorter chain lengths were examined. For instance, [Leu13, psi CH2NHLeu14]bombesin-(5-14),[Leu13, psi CH2NHLeu14] bombesin-(6-14), and [Leu9, psi CH2NHLeu10]neuromedin C had IC50 values of 150, 150, and 280 nM, respectively. Incorporation of a D-Phe residue at position 6 of [Leu13, psi CH2NHLeu14] bombesin did not significantly change the various biological parameters. However, its presence in [Leu13, psi CH2NHLeu14]bombesin-(6-14) and at position 2 of psi-neuromedin C-(2-10) resulted in about 10-fold increases in potency up to and above that of the original antagonist. For instance, [D-Phe6,Leu13,psi CH2NHLeu14]bombesin-(6-14) and des-Gly1-[D-Phe2,Leu9,psi CH2NHLeu10]neuromedin C exhibited IC50 values of 5 and 28 nM, respectively. Analogues based on the litorin sequence which contains an NH2-terminal pyroglutamic acid residue at the bombesin position 6 equivalent were also quite potent. The ability of various analogues to interact with bombesin receptors on pancreatic acini correlated reasonably well with potencies derived from inhibition of bombesin-stimulated growth of Swiss 3T3 cells. Additional studies of NH2- and COOH-terminal structure-activity relationships resulted in the synthesis of [D-Phe6,Leu13,psi CH2NHPhe14]bombesin-(6-14), which was particularly effective in inhibiting 3T3 cell growth at high picomolar concentrations (IC50 = 0.72 nM and Ki = 3.1 nM for 3T3 cells; IC50 = 7.5 nM and Ki = 9.9 nM for acini). Detailed investigations with one of the most potent antagonists, [D-Phe6,Leu13,psi CH2NHLeu14]bombesin-(6-14) (Ki = 14 nM for acini cells and 7.1 for 3T3 cells), demonstrated that this analogue was a competitive inhibitor of bombesin and that this activity was specific for the bombesin receptor. Thus, inhibitory potencies have been improved generally up to 25 times over previously reported structures; and, given that bombesin itself has a Ki of 1.2 nM for 3T3 cell binding, some of these analogues are extraordinarily high affinity receptor antagonists. They can also be synthesized more readily and offer fewer proteolytic degradation sites than the original pseudopeptide and should be excellent candidates for in vivo studies aimed at inhibition of bombesin-dependent human small cell lung carcinoma growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号