首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pigeons were studied in an extension of a study by Aum et al. [Aum, S., Brown, B.L., Hemmes, N.S. 2004. The effects of concurrent task and gap events on peak time in the peak procedure. Behav. Process. 65, 43-56] on timing behavior under a discrete-trial fixed-interval (FI) procedure during which 6-s intruded events were superimposed on peak-interval (PI) test trials. In Aum et al., one event consisted in termination of the timing cue (gap trial); the other was a stimulus in the presence of which subjects had been trained to respond under an independent random-interval (RI) schedule of reinforcement (concurrent task trial). Aum et al. found a disruption of timing on concurrent task trials that was greater than that on gap trials. The present study investigated history of reinforcement associated with intruded events as a possible explanation of this earlier finding. After training to peck a side key on a 30-s PI procedure, discrimination training was conducted on the center key in separate sessions; red or green 6-s stimuli were associated with RI 24s or EXT (extinction) schedules. During testing under the PI procedure, three types of intruded events were presented during probe trials--the stimulus associated with the RI (S+) or EXT (S-) schedule during discrimination training, or a gap (termination of the side-keylight). Intruded events occurred 3, 9, or 15s after PI trial onset. Effects of reinforcement history were revealed as substantial disruption of timing during the S+ event and relatively little disruption during the S- event. Intermediate effects were found for the gap event. Results indicate that postcue effects are at least partially responsible for the disruptive effects of the S+ event.  相似文献   

2.
The effect of a concurrent task on timing performance of pigeons was investigated with the peak interval procedure. Birds were trained to peck a side key on a discrete-trial schedule that included reinforced fixed-interval (FI) 30-s trials and nonreinforced extended probe trials. Then, in separate sessions, birds were trained to peck a 6-s center key for food. In a subsequent test phase, the FI procedure was in effect along with dual-task probe test trials. On those test trials, the 6-s center key (task cue) was presented at 3, 9, or 15s after probe trial onset. During another test phase, a 6-s gap (the FI keylight was extinguished) was presented at 3, 9, or 15s after probe trial onset. Peak time increased with center key time of onset, and was greater under task than gap conditions. Moreover, peak time under task conditions exceeded values predicted by stop and reset clock mechanisms. These results are at variance with current attentional accounts of timing behavior in dual-task conditions, and suggest a role of nontemporal factors in the control of timing behavior.  相似文献   

3.
We studied the effects of cue competition on timing in both overshadowing and blocking operant procedures with pigeons. A white center key delivered reward when pecked 30 s after a red or green sidekey was presented and 10 s after presentation of the alternate color on the other sidekey. In Experiment 1, key presentations were concurrent during training trials for overshadow-condition pigeons, while side key presentations were separated across training trials for control birds. In Experiment 2, half of the birds (Blocking group) were given pre-exposure trials to either the 10-s or 30-s sidekey condition. Both blocking-condition and control birds were then given trials of concurrent side key presentations. Peak time curves were compared between experimental and control conditions. The results showed blocking of timing accuracy of a long (30-s) stimulus by a short (10-s) stimulus, but no evidence for overshadowing of timing accuracy.  相似文献   

4.
Across two experiments, a peak procedure was used to assess the timing of the onset and offset of an opportunity to run as a reinforcer. The first experiment investigated the effect of reinforcer duration on temporal discrimination of the onset of the reinforcement interval. Three male Wistar rats were exposed to fixed-interval (FI) 30-s schedules of wheel-running reinforcement and the duration of the opportunity to run was varied across values of 15, 30, and 60s. Each session consisted of 50 reinforcers and 10 probe trials. Results showed that as reinforcer duration increased, the percentage of postreinforcement pauses longer than the 30-s schedule interval increased. On probe trials, peak response rates occurred near the time of reinforcer delivery and peak times varied with reinforcer duration. In a second experiment, seven female Long-Evans rats were exposed to FI 30-s schedules leading to 30-s opportunities to run. Timing of the onset and offset of the reinforcement period was assessed by probe trials during the schedule interval and during the reinforcement interval in separate conditions. The results provided evidence of timing of the onset, but not the offset of the wheel-running reinforcement period. Further research is required to assess if timing occurs during a wheel-running reinforcement period.  相似文献   

5.
It has been shown in previous research [Kaiser, D.H., 2008. The proportion of fixed interval trials to probe trials affects acquisition of the peak procedure fixed interval timing task. Behav. Process., 77 (1), 100-108] that rats acquired peak responding sooner when fewer peak trials were presented during sessions of training with the peak procedure timing task. One potential problem with that research was that there were large differences in response rates among the groups. The present experiment attempted to examine the effect of proportion of peak trials when differences in response rate were controlled. Two groups of rats were each simultaneously tested with two versions of the peak procedure. One group was tested with 10% peak trials per session, and the other group was tested with 50% peak trials per session. For both of the groups, one of the panel lights and levers was associated with the traditional peak procedure. The other panel light and lever was associated with a similar peak procedure; however, reinforcement was provided at the end of each peak trial. This manipulation eliminated differences in response rate among the groups, however, Group 10% acquired peak responding more quickly than Group 50%, effectively replicating previous work in the absence of a response bias.  相似文献   

6.
The peak interval (PI) procedure is commonly used to evaluate animals' ability to produce timed intervals. It consists of presenting fixed interval (FI) schedules in which some of the trials are replaced by extended non-reinforced trials. Responding will often resume (resurge) at the end of the non-reinforced trials unless precautions are taken to prevent it. Response resurgence was replicated in rats and pigeons. Variation of the durations of the FI and the non-reinforced probe trials showed it to be dependent on the time when reinforcement is expected. Timing of both the normal time to reinforcement, and the subsequent time to reinforcement during the probe trials followed Weber's law. A quantitative model of resurgence is described, suggesting how animals respond to the signaling properties of reinforcement omission. Model results were simulated using a stochastic binary counter.  相似文献   

7.
We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning.  相似文献   

8.
Three experiments examined behavior in extinction following periodic reinforcement. During the first phase of Experiment 1, four groups of pigeons were exposed to fixed interval (FI 16 s or FI 48 s) or variable interval (VI 16 s or VI 48 s) reinforcement schedules. Next, during the second phase, each session started with reinforcement trials and ended with an extinction segment. Experiment 2 was similar except that the extinction segment was considerably longer. Experiment 3 replaced the FI schedules with a peak procedure, with FI trials interspersed with non-food peak interval (PI) trials that were four times longer. One group of pigeons was exposed to FI 20 s PI 80 s trials, and another to FI 40 s PI 160 s trials. Results showed that, during the extinction segment, most pigeons trained with FI schedules, but not with VI schedules, displayed pause-peck oscillations with a period close to, but slightly greater than the FI parameter. These oscillations did not start immediately after the onset of extinction. Comparing the oscillations from Experiments 1 and 2 suggested that the alternation of reconditioning and re-extinction increases the reliability and earlier onset of the oscillations. In Experiment 3 the pigeons exhibited well-defined pause-peck cycles since the onset of extinction. These cycles had periods close to twice the value of the FI and lasted for long intervals of time. We discuss some hypotheses concerning the processes underlying behavioral oscillations following periodic reinforcement.  相似文献   

9.
The primary goal was to compare results from a free-operant procedure with pigeons [Machado, A., Guilhardi, P., 2000. Shifts in the psychometric function and their implications for models of timing. J. Exp. Anal. Behav. 74, 25-54, Experiment 2] with new results obtained with rats. The secondary goal was to compare the results of both experiments with dependent variables that were not used in the original publication. As in the original study with pigeons, rats were trained on a two-alternative free-operant psychophysical procedure in which left lever press responses were reinforced during the first and second quarters of a 60-s trial, and right lever press responses were reinforced during the third and fourth quarters of the trial. The quarters were reinforced according to four independent variable interval (VI) schedules of reinforcement. The VI duration was manipulated in each quarter, and shifts in the psychophysical functions that relate response rate with time since trial onset were measured. The results obtained with rats were consistent with those previously obtained with pigeons. In addition, results not originally reported were also consistent between rats and pigeons, and provided insights into the perception, memory, and decision processes in Scalar Expectancy Theory and Learning-to-Time Theory.  相似文献   

10.
The effects of d-amphetamine on pigeons' key-pecking under the peak interval (PI) procedure were investigated in two experiments. In experiment I the effects of doses of d-amphetamine from 0.75 to 3.0 mg/kg on responding under PI 30 and 45 s were studied for 10 successive days. Reductions in peak time and wait time were observed at both PI values and an increase in the width was found at PI 30 s. There was no evidence of tolerance. In experiment II, pigeons exposed to a PI 45 s schedule were administered doses of D-amphetamine of 1.5 and 3.0 mg/kg for 30 successive days. Reductions in peak time and wait time were found here. Evidence of tolerance was found in wait time, peak time and width of the distribution at the higher dose. In both experiments a rate-dependent effect of the drug was found in the portion of each peak trial before the time that food was delivered on reinforced trials; this effect was weaker after the customary time of food delivery. The rate-dependent effect for responses before food time, combined with little effect of the drug on responses after food time, is shown by simulation to be sufficient to account for the reduction in peak time, without the need to appeal to an internal clock mechanism.  相似文献   

11.
In this paper we investigate how amphetamine affects performance in a PI task by comparing two analyses of responding during peak trials. After training on 24 s fixed interval (FI-24) with 96 s peak trials, rats were given amphetamine for 4 consecutive days at doses of .5 and 1.0 mg/kg. Responses during peak trials were fitted with a Gaussian distribution to estimate the expected time of reinforcement from the peak time. A single trials analysis was also performed to determine the start time and stop time of the transition into and out of a high rate of responding on each peak trial. Amphetamine significantly decreased peak times as measured with the Gaussian curve fitting. However, in the single trials analysis, animals initiated responding significantly earlier, but did not stop responding earlier. Thus, fitting a Gaussian to the average performance across trials sometimes provides a different characterization of the timing process than does analyzing the start and stop of responding on individual trials. In the current experiment, the latter approach provided a more precise characterization of the effects of amphetamine on response timing.  相似文献   

12.
In positive serial conditional discrimination, animals respond during a target stimulus when it is preceded by a feature stimulus, but they do not respond when the same target stimulus is presented alone. Moreover, the feature and target stimuli are separated from each other by an empty interval. The present work aimed to investigate if two durations (4 or 16 s) of the same feature stimulus (light) could modulate the operant responses of rats to different levers (A and B) during a 5-s target stimulus (tone). In the present study, lever A was associated with the 4-s light, and lever B was associated with the 16-s light. A 5-s empty interval was included between the light and the tone. In the same training procedure, the rats were also presented with the 5-s tone without the preceding light stimuli. In these trials, the responses were not reinforced. We evaluated the hippocampal involvement of these behavioral processes by selectively lesioning the dentate gyrus with colchicine. Once trained, the rats were submitted to a test using probe trials without reinforcement. They were presented with intermediate durations of the feature stimulus (light) to obtain a temporal bisection curve recorded during the exposure to the target stimuli. The rats from both groups learned to respond with high rates during tones preceded by light and with low rates during tones presented alone, which indicated acquisition of the serial conditional discrimination. The rats were able to discriminate between the 4- and 16-s lights by correctly choosing lever A or B. In the test, the temporal bisection curves from both experimental groups showed a bisection point at the arithmetic mean between 4 and 16 s. Such processes were not impaired by the dentate gyrus lesion. Thus, our results showed that different durations of a feature stimulus could result in conditional properties. However, this processing did not appear to depend on the dentate gyrus alone.  相似文献   

13.
Pigeons well trained on a fixed interval 10-s schedule of reinforcement were tested on the peak procedure. In a successive conditions design, they were either pre-fed or not in the experimental setting. Pre-feeding decreased the rate of responding. It also led to a maximum rate of responding that occurred 2-3 s later than in the control condition, where the maximum occurred at the usual time of reinforcement. The shift in peak time in response to pre-feeding shows that peak time may not be a pure measure of timing. The results are also interpreted in terms of timing theories.  相似文献   

14.
Theories of timing have been applied to choice between delayed rewards by assuming that delays are represented in memory and that subjects sample from memory when choosing between alternatives. To search for covariation in single-trial measures of performance that might confirm this assumption, we used a procedure that allowed for convergent measurement of choice and timing behavior. Four pigeons responded in a concurrent chains/peak procedure in which the terminal links were fixed-interval (FI) 8s and FI 16s, across conditions the duration of the initial-link schedule was either short or long, and one quarter of the terminal links lasted for 48 s and ended without reinforcer delivery. Preference for the FI 8-s alternative was stronger with shorter initial links, replicating the 'initial-link effect'. Responding on no-food trials was unaffected by initial-link duration, and aggregated across trials, was typical of the peak procedure: response distributions were approximately Gaussian, with modes near the FI schedule durations, and variance was greater for the FI 16-s terminal link. Analysis of local measures of initial-link performance (e.g., pause to begin responding, time spent responding, number and duration of visits to each alternative, etc.) found that the initial-link effect was associated with an increase in the number and duration of visits per cycle to the nonpreferred alternative. Regression analyses showed that local initial-link measures contributed relatively little additional variance in predicting performance on individual no-food trials beyond that accounted for by FI schedule. Our results provide no clear evidence that initial- and terminal-link responding in concurrent chains are mediated by a common representation of terminal-link delays.  相似文献   

15.
Previous research has suggested that using stationary and moving levers as nonspatial response alternatives can significantly enhance the speed of acquiring a temporal discrimination in rats. In Experiment 1, rats were trained to discriminate 2 and 8s of magazine light illumination by responding to either a stationary lever or a moving lever with a cue light illuminated above it. Rats learned to discriminate event durations at a high level of accuracy after 25 sessions of training. During subsequent delay tests, rats exhibited a strong choose-long bias, indicating that they were timing from the onset of the magazine light until the entry of levers into the chamber. This occurred regardless of whether intertrial intervals and delay intervals were dark or illuminated. On test trials in which the sample was omitted, rats responded as if the short sample had been presented. In Experiment 2, the rats received extensive training with dark and illuminated variable delay intervals (1-4 s). However, they continued to exhibit a tendency to time from the onset of the magazine light until entry of the levers into the chamber. Although the use of stationary/uncued and moving/cued levers as response alternatives enhanced the speed of acquisition of the event duration discrimination in rats, additional procedural modifications will be necessary to prevent rats from timing during the delay interval.  相似文献   

16.
A common procedure for studying the ability of animals to time is the peak procedure. With the peak procedure, animals are first trained on a fixed interval schedule (i.e., 30s). After the animals have been well trained on the fixed interval schedule, probe trials are introduced. On probe trials, the stimulus is presented longer (i.e., 90s) and the animal does not receive reinforcement for responding. When animals are first presented with probe trials responding remains flat following the point that reinforcement normally occurs on fixed interval trials. The descending slope that eventually emerges is acquired with experience with probe trials. The present experiments manipulated the percentage of probe trials compared to FI trials across groups of rats. It was hypothesized that the descending limb of peak responding would be acquired more quickly when there were many probe trials per session as this might facilitate extinction of responding beyond the interval that reinforcement normally occurs. It was found, however, that acquisition of peak responding occurred best when there were few probe trials per session.  相似文献   

17.
The circadian control of adult emergence was studied in Anopheles gambiae. In contrast to the situation reported for other mosquitoes, the timing of adult eclosion can be modified by the light regime. Comparison of the timing of pupal—adult ecdysis in groups of individuals pupating at the same time and then kept either in 12 h light alternating with 12 h dark (LD 12:12) or constant light, at temperatures from 22 to 34·5°C, showed that the timing can be modified by the light regime. In LD, eclosion due to take place during the middle and later part of the light phase was delayed, giving a peak near light-off; the maximum delay was of the order of 4–5 h at both 22 and 34·5°C. This effect appears to be mediated by a temperature-compensated timing mechanism. Experiments with different light regimes indicated that the time cue is a previous change from light to dark. When this was given to late fourth stage larvae it affected the timing of adult eclosion without affecting the time of pupation.  相似文献   

18.
We examined the local field potential of the hippocampus to monitor brain states during a conditional discrimination task, in order to elucidate the relationship between ongoing brain states and a conditioned motor reflex. Five 10-week-old Wistar/ST male rats underwent a serial feature positive conditional discrimination task in eyeblink conditioning using a preceding light stimulus as a conditional cue for reinforced trials. In this task, a 2-s light stimulus signaled that the following 350-ms tone (conditioned stimulus) was reinforced with a co-terminating 100-ms periorbital electrical shock. The interval between the end of conditional cue and the onset of the conditioned stimulus was 4±1 s. The conditioned stimulus was not reinforced when the light was not presented. Animals successfully utilized the light stimulus as a conditional cue to drive differential responses to the identical conditioned stimulus. We found that presentation of the conditional cue elicited hippocampal theta oscillations, which persisted during the interval of conditional cue and the conditioned stimulus. Moreover, expression of the conditioned response to the tone (conditioned stimulus) was correlated with the appearance of theta oscillations immediately before the conditioned stimulus. These data support hippocampal involvement in the network underlying a conditional discrimination task in eyeblink conditioning. They also suggest that the preceding hippocampal activity can determine information processing of the tone stimulus in the cerebellum and its associated circuits.  相似文献   

19.
Four experiments with rats investigated whether the time between appetitive conditioning trials can serve as a discriminative cue for responding during the next conditional stimulus (CS). In Experiment 1, rats that received extinction trials with a 4-min intertrial interval (ITI) showed spontaneous recovery after a retention interval of 16 min, whereas rats that received extinction with a 16-min ITI did not. Experiments 2 and 3 investigated more explicit discriminations between the 4- and 16-min ITIs. When a 16-min ITI signaled that the CS would be reinforced and a 4-min ITI signaled that it would not, the ITIs modulated responding to the CS. But when the 4-min ITI signaled reinforcement and the 16-min ITI did not, there was less evidence of modulation by the ITIs. This asymmetry was due at least partly to a difficulty in performance rather than learning. Experiment 4 investigated similar discriminations with 1- and 4-min ITIs. Here the results took a different form: time in the reinforced ITI elicited responding directly, but did not modulate responding to the CS. ITI can function as a contextual cue, and the results suggest new similarities between the processes behind interval timing and associative learning.  相似文献   

20.
Previous research indicates that dopamine controls both the speed of an internal clock [Maricq, A.V., Church, R.M., 1983. The differential effects of haloperidol and methamphetamine on time estimation in the rat. Psychopharmacology 79, 10-15] and sharing of resources between the timer and other cognitive processes [Buhusi, C.V., 2003. Dopaminergic mechanisms of interval timing and attention. In: Meck, W.H. (Ed.), Functional and Neural Mechanisms of Interval Timing. CRC Press, Boca Raton, FL, pp. 317-338]. For example, dopamine agonist methamphetamine increases the speed of an internal clock and resets timing after a gap, while dopamine antagonist haloperidol decreases the speed of an internal clock and stops timing during a gap [Buhusi, C.V., Meck, W.H., 2002. Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav. Neurosci. 116, 291-297]. Using a 20-s peak-interval procedure with gaps we examined the acute effects of clozapine (2.0mg/kg i.p.), which exerts differential effects on dopamine and serotonin in the cortex and striatum, two brain areas involved in interval timing and working memory. Relative to saline, clozapine injections shifted the response functions leftward both in trials with and without gaps, suggesting that clozapine increased the speed of an internal clock and facilitated the maintenance of the pre-gap interval in working memory. These results suggest that clozapine exerts effects in different brain areas in a manner that allows for the pharmacological separation of clock speed and working memory as a function of peak trials without and with gaps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号