首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A biosensor for glucose using glucose dehydrogenase immobilized on a chemically modified graphite electrode was supplied with coenzyme, nicotinamide adenine dinucleotide (NAD+), through pores in the material. A graphite rod was hollowed out, leaving 0.3 mm at the end contacting the solution, filled with 10 mM NAD+ and pressurized. The response factor was 40% of that obtained when 2 mM NAD+ was mixed with the sample solution in a flow system. The coenzyme consumption was 11 microliters h-1 representing a 500-fold saving compared to supply through the bulk solution. The biosensor had a linear calibration curve from the detection limit, 1 microM, to 2 mM glucose and a repeatability of 0.3%. The graphite electrode was modified by adsorption of a bis-(benzophenoxazinyl)-terephthaloyl derivative in order to be able to oxidize NADH at 0 mV versus Ag/AgCl, 0.1 M KCl.  相似文献   

2.
A method of pH distribution measurements in agar nutrient media containing expanding bacterial populations is described. It is based on measuring pH microsamples taken at different points of the media. The sample volume was 10 microliters. A pH sensitive field effect transistor was used as a measuring electrode. Acidification was found to occur in glucose media, while alkalization occurred in the media containing peptone.  相似文献   

3.
We observed P31-NMR signals of intracellular phosphorylated metabolites, i.e. ATP, NAD(H) and UDPG, in the aerobically cultured cells of AJ13375 (a derivative of E. coli K-12) without a cell culture circulating system, which needs much more cells. Each NMR spectrum of 40 ml cell-culture was obtained with a 25 mm Phi sample tube mini-fermenter equipped with a pH electrode and three supply routes for O2 gas, aqueous ammonia and glucose. Spectra were measured at 15-min intervals. When glucose in the culture medium was consumed, P31-NMR signals of ATP disappeared first and then those of ADP decreased to below the limit of detection. The intracellular concentration of ATP was estimated to be approximately 7 mM.  相似文献   

4.
An interference and cross-talk free dual electrode amperometric biosensor integrated with a microdialysis sampling system is described, for simultaneous monitoring of glucose and lactate by flow injection analysis. The biosensor is based on a conventional thin layer flow-through cell equipped with a Pt dual electrode (parallel configuration). Each Pt disk was modified by a composite bilayer consisting of an electrosynthesised overoxidized polypyrrole (PPYox) anti-interference membrane covered by an enzyme entrapping gel, obtained by glutaraldehyde co-crosslinking of glucose oxidase or lactate oxidase with bovine serum albumin. The advantages of covalent immobilization techniques were coupled with the excellent interference-rejection capabilities of PPYox. Ascorbate, cysteine, urate and paracetamol produced lactate or glucose bias in the low micromolar range; their responses were, however, completely suppressed when the sample was injected through the microdialysis unit. Under these operational conditions the flow injection responses for glucose and lactate were linear up to 100 and 20 mM with typical sensitivities of 9.9 (+/- 0.1) and 7.2 (+/- 0.1) nA/mM. respectively. The shelf-lifetime of the biosensor was at least 2 months. The potential of the described biosensor was demonstrated by the simultaneous determination of lactate and glucose in untreated tomato juice samples; results were in good agreement with those of a reference method.  相似文献   

5.
An on-line enzyme assay is presented based on flow injection techniques combined with fluorimetric detection. It allows to monitor NAD-dependent oxidoreductases during the purification of microbial crude extracts or partially purified enzymes by fast protein liquid chromatography (FPLC) in a near real-time mode. The arrangement is simple and can be easily integrated in the chromatographic system avoiding dead volumes. A high measuring frequency (up to 180 samples h-1) and a short response time (10-30 s) are achieved. The method has a low limit of detection (approximately 0.01 U ml-1), and a good reproducibility (1-4%), the injected sample volume is only 2 microliters.  相似文献   

6.
A glucose detection approach based on the concept of electrochemical depletion of electroactive species in diffusion layer was established, using scanning electrochemical microscopy (SECM). By controlling the glucose oxidase (GOD) modified electrode (substrate electrode) at a proper potential of electrochemical oxidation of interfering electroactive species, i.e., ascorbic acid (AA), an interference-free microcircumstance was formed in the diffusion layer of the substrate electrode. Consequently, we could successfully sense hydrogen peroxide generated from an enzymatic reaction by locating a Pt ultramicroelectrode (UME) (tip electrode, 5 microm in radius) into the diffusion layer of the substrate electrode. Properties of this interference-removing approach based on electrochemical depletion were systematically investigated. Results showed that the interference-removing efficiency was significantly determined by the tip-substrate distance and substrate potential. When the tip-substrate distance was 11 microm (2.2 times of the tip electrode radius) and the substrate potential was 0.5 V, nearly 90% of AA (0.5 mM) could be depleted within 30s without consumption of H2O2. Under these conditions, 0.1 mM AA showed no influence on the detection of 0.5 mM glucose. The linear range of glucose detection is 0.01-1 mM with a detection limit (DL) of 0.005 mM (correlation coefficient is 0.9948). This research will open a new way for developing selective micro-biosensors.  相似文献   

7.
Glucose oxidase was embedded in organic films through a layer-by-layer approach, where the enzyme demonstrated significantly enhanced electron-transfer reactivity and finely tuned enzymatic activity. An unmediated, reagentless glucose biosensor was accordingly prepared with two polyethylenimine/glucose oxidase bilayers-modified pyrolytic graphite electrode. A calibration linear range of glucose was 0.5-8.9 mM with a detection limit of 50 microM and sensitivity of 0.76 microA mM(-1).  相似文献   

8.
The present report describes a one-step method for the derivatization and extraction of nonesterified fatty acids in plasma with subsequent analysis by conventional capillary gas-liquid chromatography or gas-liquid chromatography-mass spectrometry. The procedure requires 200 microliters of citrated plasma, dilution with 200 microliters of methanol containing a suitable internal standard, and rapid methylation (10 min) with ethereal diazomethane. An aliquot (60%) of the ether layer is subsequently removed, taken to dryness with nitrogen gas, and the residue is dissolved in a small volume of hexane (usually 50 microliters) for chromatographic analysis (taking 1 microliter for on-column injection). Samples are ready for analysis within 15 min after initial preparation of the plasma. The method has been found to be simple and rapid, providing clean fatty acid profiles. Although the method has been tested with 200 microliters of rat and human plasma, it can easily be adapted to a 40 microliters plasma sample if the esterified plasma extract is suspended in a smaller volume of hexane and/or a larger aliquot of the extract were to be injected into the gas chromatograph through use of a splitless injector.  相似文献   

9.
A new glucose biosensor has been fabricated by immobilizing glucose oxidase into a sol-gel composite at the surface of a basal plane pyrolytic graphite (bppg) electrode modified with multiwall carbon nanotube. First, the bppg electrode is subjected to abrasive immobilization of carbon nanotubes by gently rubbing the electrode surface on a filter paper supporting the carbon nanotubes. Second, the electrode surface is covered with a thin film of a sol-gel composite containing encapsulated glucose oxidase. The carbon nanotubes offer excellent electrocatalytic activity toward reduction and oxidation of hydrogen peroxide liberated in the enzymatic reaction between glucose oxidase and glucose, enabling sensitive determination of glucose. The amperometric detection of glucose is carried out at 0.3 V (vs saturated calomel electrode) in 0.05 M phosphate buffer solution (pH 7.4) with linear response range of 0.2-20 mM glucose, sensitivity of 196 nA/mM, and detection limit of 50 microM (S/N=3). The response time of the electrode is < 5s when it is stored dried at 4 degrees C, the sensor showed almost no change in the analytical performance after operation for 3 weeks. The present carbon nanotube sol-gel biocomposite glucose oxidase sensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and rapid response and in comparison to bulk modified composite biosensors the amounts of enzyme and carbon nanotube needed for electrode fabrication are dramatically decreased.  相似文献   

10.
Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.  相似文献   

11.
The direct electrocatalytic oxidation of glucose in alkaline medium at nanoscale nickel hydroxide modified carbon ionic liquid electrode (CILE) has been investigated. Enzyme free electro-oxidation of glucose have greatly been enhanced at nanoscale Ni(OH)(2) as a result of electrocatalytic effect of Ni(+2)/Ni(+3) redox couple. The sensitivity to glucose was evaluated as 202 microA mM(-1)cm(-2). From 50 microM to 23 mM of glucose can be selectively measured using platelet-like Ni(OH)(2) nanoscale modified CILE with a detection limit of 6 microM (S/N=3). The nanoscale nickel hydroxide modified electrode is relatively insensitive to electroactive interfering species such as ascorbic acid (AA), and uric acid (UA) which are commonly found in blood samples. Long-term stability, high sensitivity and selectivity as well as good reproducibility and high resistivity towards electrode fouling resulted in an ideal inexpensive amperometric glucose biosensor applicable for complex matrices.  相似文献   

12.
A generic flow-through amperometric microenzyme sensor is described, which is based on semi-permeable dialysis tubing carrying the sample to be analyzed. This tubing (300 microm OD) is led through a small cavity, containing the working and reference electrode. By filling this cavity with a few microl of an appropriate enzyme solution, an amperometric enzyme sensor results. As the dialysis tubing is impermeable for large molecular species such as enzymes, this approach does not require any immobilization chemistry, and as a consequence the enzyme is present in its natural free form. Based on this principle, amperometric sensors for lactate, glucose, and glutamate were formed by filling cavities, precision machined in Perspex, with buffered solutions containing respectively, lactate-, glucose-, and glutamate-oxidase. All sensors showed a large linear range (0-35 mM for glucose, 0-3 mM for lactate, and 0-5 mM for glutamate) covering the complete physiological range. The lower detection limit was in the order of 15-50 microM. Applicability in flow injection analysis systems is demonstrated.  相似文献   

13.
Indirectly heated electrodes operating in a non-isothermal mode have been used as transducers for reagentless glucose biosensors. Pyrroloquinoline quinone-dependent soluble glucose dehydrogenase (PQQ-sGDH) was entrapped on the electrode surface within a redox hydrogel layer. Localized polymer film precipitation was invoked by electrochemically modulating the pH-value in the diffusion zone in front of the electrode. The resulting decrease in solubility of an anodic electrodeposition paint (EDP) functionalized with Osmium complexes leads to precipitation of the redox hydrogel concomitantly entrapping the enzyme. The resulting sensor architecture enables a fast electron transfer between enzyme and electrode surface. The glucose sensor was operated at pre-defined temperatures using a multiple current-pulse mode allowing reproducible indirect heating of the sensor. The sensor characteristics such as the apparent Michaelis constants K(M)(app) and maximum currents I(max)(app) were determined at different temperatures for the main substrate glucose as well as a potential interfering co-substrate maltose. The limit of detection increased with higher temperatures for both substrates (0.020 mM for glucose, and 0.023 mM for maltose at 48 degrees C). The substrate specificity of PQQ-sGDH is highly temperature dependent. Therefore, a mathematical model based on a multiple linear regression approach could be applied to discriminate between the current response for glucose and maltose. This allowed accurate determination of glucose in a concentration range of 0-0.1mM in the presence of unknown maltose concentrations ranging from 0 to 0.04 mM.  相似文献   

14.
Shi J  Ci P  Wang F  Peng H  Yang P  Wang L  Ge S  Wang Q  Chu PK 《Biosensors & bioelectronics》2011,26(5):2579-2584
A silicon microchannel plate (MCP) array electrode modified with over-oxidized polypyrrole (OPPy) has been fabricated to detect glucose. The morphology and structure of the electrode are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The OPPy modified silicon MCP array electrode exhibits high electrocatalytic activity as well as excellent selectivity to the electrochemical oxidation of glucose. At a potential of +0.08 V, good sensitivity of 0.37 mA mM(-1) cm(-2) and detection limit of 2.06 μM are attained. The linear range is up to 24 mM with a linear correlation coefficient of 0.997. Furthermore, the electrode is highly resistant to interfering substances because the effects of common coexisting substances can be effectively eliminated by the OPPy film and the response in the current to interferences on the electrode surface is almost negligible. This novel electrode has high potential in nonenzymatic detection of glucose.  相似文献   

15.
Liu S  Tian J  Wang L  Luo Y  Lu W  Sun X 《Biosensors & bioelectronics》2011,26(11):4491-4496
Graphene platelet-glucose oxidase (GP-GOD) nanostructures have been prepared through self-assembly of GOD and chitosan (CS) functionalized GPs by electrostatic attraction in aqueous solution. The stable aqueous dispersion of GPs was prepared by chemical reduction of graphene oxide with the use of CS as a reducing and stabilizing agent. UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the resulting GPs and GP-GOD nanostructures. Furthermore, a glucose biosensor was constructed by deposition of the resultant GP-GOD on the surface of glassy carbon electrode. It was found that the resulting biosensor exhibits good response to glucose. The linear detection range is estimated to be from 2 to 22 mM (r=0.9987), and the detection limit is estimated to be 20 μM at a signal-to-noise ratio of 3.  相似文献   

16.
This paper proposes a very simple procedure for preparing a biocompatible sensor based on a protein (bovine serum albumin, BSA), enzyme and vinylferrocene (VF) composite membrane modified electrode. The membrane was prepared simply by first casting vinylferrocene and then coating it with BSA and glucose oxidase immobilised with glutaraldehyde. The sensor response was independent of dissolved oxygen concentration from 3 to 10 ppm and showed good stability for serum sample measurement, unlike the commonly used BSA/enzyme modified electrode. The sensor response was almost unchanged over the measurement time (>10 h) whereas the responses of a BSA and glucose oxidase modified platinum electrode and an osmium-polyvinylpyridine wired horseradish peroxidase modified electrode (Ohara et al., 1993) fell to 68% of their initial value in a serum sample containing 10mM glucose.  相似文献   

17.
A flow injection analysis (FIA) biosensor system has been developed for on-line determination of glucose during mammalian cell cultivation. The culture sample was peristaltically withdrawn from the bioreactor and after cell separation by a steam sterilizable ceramic microfilter, the filtrate was continuously fed to the FIA mediated-biosensor system at 4 mLh(-1), whereas the cell-containing retentate was recirculated to the bioreactor. In the amperometric biosensor system, glucose oxidase was covalently immobilized onto a preactivated nylon membrane and attached to the sensing area of a platinum working electrode. The enzyme reaction was coupled with the mediator 1,1'-dimethylferricinium (DMFe(+))-cyclodextrin inclusion complex to recycle the reduced glucose oxidase to its original active state. 1,1'-Dimethylferrocene (DMFe) was then reoxidized to DMFe(+) at the surface of the platinum electrode poised at + 0.15 V vs silver/silver chloride. The FIA mediated-biosensor was linear up to 6 mM glucose, with a detection limit of 0.1 mM, and possessed excellent reproducibility (+/- 0.4 %, 95 % confidence interval) over 123 repeated analyses during a 62 h continuous operation. The immobilized glucose oxidase was stable for up to 7 days when applied to glucose measurement during 5-10 day fed-batch cultivation of 293S mammalian cells. The results obtained from the mediated-biosensor system compared well with the hexokinase and HPLC data. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 497-504, 1997.  相似文献   

18.
A way to convert the volume change of a biochemo-mechanical gel into the change in liquid column length was developed. Our trial sensor device consisted of a small compartment for incorporating the gel, a flow channel with a filled dye solution, and a poly(dimethylsiloxane) (PDMS) diaphragm by which the gel and the dye solution were separated. A lightly cross-linked N-isopropylacrylamide (NIPAAm)/acrylic acid (AA) copolymer gel with immobilized glucose oxidase was used as a sensing element. It was found that a change in the gel volume caused by the immobilized enzyme reaction was accurately converted into a change of the column length (Deltal) with the help of the PDMS diaphragm. By use of a cylindrical gel (diameter approximately 2 and thickness approximately 1 mm), the time curve of Deltal varied depending upon glucose concentration over a range of 0.2-50 mM; in particular, it is of importance that semilogarithmic plots of Deltal (in mm) against glucose concentration (in mM) can be used as a calibration curve. For glucose solutions of mM order, 1 min was enough to determine the concentrations, whereas 10 min was required for concentrations of microM order. When the measurement time was limited within 10 min, the lower detection limit was 200 microM. The response was affected by buffering capacity of the samples, but this was controllable through reduction of the sample volume. These results indicate that the present way can be used for the determination of glucose concentration.  相似文献   

19.
Microband glucose biosensors were produced by insulating and sectioning through a screen-printed, water-based carbon electrode containing cobalt phthalocyanine redox mediator and glucose oxidase enzyme. Under quiescent conditions at 37 °C, at an operating potential of +0.4 V, they produced an amperometric response to glucose in buffer solutions with a sensitivity of 26.4 nA/mM and a linear range of 0.45 to 9.0 mM. An optimal pH value of 8.5 was obtained under these conditions, and a value for activation energy of 40.55 kJ mol−1 was calculated. In culture medium (pH 7.3), a sensitivity of 13 nA/mM was obtained and the response was linear up to 5 mM with a detection limit of 0.5 mM. The working concentration was up to 20 mM glucose with a precision of 11.3% for replicate biosensors (n = 4). The microband biosensors were applied to determine end-point glucose concentrations in culture medium by monitoring steady-state current responses 400 s after transfer of the biosensors into different sample solutions. In conjunction with cultures of HepG2 (human Caucasian hepatocyte carcinoma) cells, current responses obtained in 24-h supernatants showed an inverse correlation (R2 = 0.98) with cell number, indicating that the biosensors were applicable for monitoring glucose metabolism by cells and of quantifying cell number. Glucose concentrations determined using the biosensor assay were in good agreement, for concentrations up to 20 mM, with those determined spectrophotometrically (R2 = 0.99). This method of end-point glucose determination was used to provide an estimated rate of glucose uptake for HepG2 cells of 7.9 nmol/(106 cells min) based on a 24-h period in culture.  相似文献   

20.
An enzyme-free amperometric method was established for glucose detection using a nanoporous gold film (NPGF) electrode prepared by a rapid one-step anodic potential step method within 5 min. The prepared NPGF had an extremely high roughness and was characterized by scanning electron microscopy (SEM) and cyclic voltammetry. Electrochemical responses of the as-prepared NPGF to glucose in 0.1M phosphate buffer solution (PBS, pH 7.4) with or without Cl(-) were discussed. In amperometric studies carried out at -0.15 V in the absence of Cl(-), the NPGF electrode exhibited a high sensitivity of 232 μA mM(-1)cm(-2) and gave a linear range from 1mM up to 14 mM with a detection limit of 53.2 μM (with a signal-to-noise ratio of 3). In addition, the oxidation of ascorbic acid (AA) and uric acid (UA) can be completely eliminated at such a low applied potential. On the other hand, the quantification of glucose in 0.1M PBS (pH 7.4) containing 0.1M NaCl offered an extended linear range from 10 μM to 11 mM with a sensitivity of 66.0 μA mM(-1)cm(-2) and a low detection limit of 8.7 μM (signal-to-noise ratio of 3) at a detection potential of 0.2V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号