首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The binding of integrase (IN) to lens epithelium-derived growth factor (LEDGF)/p75 in large part determines the efficiency and specificity of HIV-1 integration. However, a significant residual preference for integration into active genes persists in Psip1 (the gene that encodes for LEDGF/p75) knockout (KO) cells. One other cellular protein, HRP2, harbors both the PWWP and IN-binding domains that are important for LEDGF/p75 co-factor function. To assess the role of HRP2 in HIV-1 integration, cells generated from Hdgfrp2 (the gene that encodes for HRP2) and Psip1/Hdgfrp2 KO mice were infected alongside matched control cells. HRP2 depleted cells supported normal infection, while disruption of Hdgfrp2 in Psip1 KO cells yielded additional defects in the efficiency and specificity of integration. These deficits were largely restored by ectopic expression of either LEDGF/p75 or HRP2. The double-KO cells nevertheless supported residual integration into genes, indicating that IN and/or other host factors contribute to integration specificity in the absence of LEDGF/p75 and HRP2. Psip1 KO significantly increased the potency of an allosteric inhibitor that binds the LEDGF/p75 binding site on IN, a result that was not significantly altered by Hdgfrp2 disruption. These findings help to rule out the host factor-IN interactions as the primary antiviral targets of LEDGF/p75-binding site IN inhibitors.  相似文献   

3.
4.
Human lens epithelium-derived growth factor (LEDGF)/p75 protein forms a specific nuclear complex with human immunodeficiency virus type 1 (HIV-1) integrase and is essential for nuclear localization and chromosomal association of the viral protein. We now studied nuclear import of LEDGF/p75 in live and semipermeabilized cells. We show that nuclear import of LEDGF/p75 is GTP-, Ran-, importin-alpha/beta-, and energy-dependent and that the protein competes with the canonical SV40 large T antigen nuclear localization signal (NLS) for nuclear import receptors. We identified the NLS of LEDGF/p75 through deletion analysis and site-directed mutagenesis. The LEDGF/p75 NLS, 148GRKRKAEKQ156, belongs to the canonical SV40-like family. Fusion of this short peptide to the amino terminus of Escherichia coli beta-galactosidase rendered the fusion protein nuclear, confirming that the LEDGF/p75 NLS is transferable. Moreover, a single amino acid change in the NLS was sufficient to exclude the mutant LEDGF/p75 protein from the nucleus and abolish nuclear import of HIV-1 integrase.  相似文献   

5.
Lens epithelium-derived growth factor (LEDGF)/p75 is an important cellular co-factor for human immunodeficiency virus (HIV) replication. We originally identified LEDGF/p75 as a binding partner of integrase (IN) in human cells. The interaction has been mapped to the integrase-binding domain (IBD) of LEDGF/p75 located in the C-terminal part. We have subsequently shown that IN carrying the Q168A mutation remains enzymatically active but is impaired for interaction with LEDGF/p75. To map the integrase/LEDGF interface in more detail, we have now identified and characterized two regions within the enzyme involved in the interaction with LEDGF/p75. The first region centers around residues W131 and W132 while the second extends from I161 up to E170. For the different IN mutants the interaction with LEDGF/p75 and the enzymatic activities were determined. IN(W131A), IN(I161A), IN(R166A), IN(Q168A) and IN(E170A) are impaired for interaction with LEDGF/p75, but retain 3' processing and strand transfer activities. Due to impaired integration, an HIV-1 strain containing the W131A mutation in IN displays reduced replication capacity, whereas virus carrying IN(Q168A) is replication defective. Comparison of the wild-type IN-LEDGF/p75 co-crystal structure with that of the modelled structure of the IN(Q168A) and IN(W131A) mutant integrases corroborated our experimental data.  相似文献   

6.
7.
8.
LEDGF/p75 is known to enhance the integrase strand transfer activity in vitro, but the underlying mechanism is unclear. Using an integrase assay with a chemiluminescent readout adapted to a 96-well plate format, the effect of LEDGF/p75 on both the 3'-processing and strand transfer steps was analyzed. Integrase inhibitors of the strand transfer reaction remained active in the presence of LEDGF/p75, but displayed 3- to 7-fold higher IC50 values. Our analyses indicate that, in the presence of 150 nM LEDGF/p75, active integrase/donor DNA complexes were increased by 5.3-fold during the 3'-processing step. In addition, these integrase/donor DNA complexes showed a 4.5-fold greater affinity for the target DNA during the subsequent strand transfer step. We also observed a 3.7-fold increase in the rate constant of catalysis of the strand transfer step when 150 nM LEDGF/p75 was present during the 3'-processing step. In contrast, when LEDGF/p75 was added at the beginning of the strand transfer step, no increase in either the concentration of active integrase/donor DNA complex or its rate constant of strand transfer catalysis was observed. This observation suggested that the integrase/donor DNA formed in the absence of LEDGF/p75 became refractory to the stimulatory effect of LEDGF/p75. Instead, this LEDGF/p75 added at the start of the strand transfer step was able to promote the formation of a new cohort of active integrase/donor DNA complexes which became functional with a delay of 45 min after LEDGF/p75 addition. We propose a model whereby LEDGF/p75 can only bind integrase before the latter binds donor DNA whereas donor DNA can engage either free or LEDGF/p75-bound integrase.  相似文献   

9.
Restricting linear peptides to their bioactive conformation is an attractive way of improving their stability and activity. We used a cyclic peptide library with conformational diversity for selecting an active and stable peptide that mimics the structure and activity of the HIV-1 integrase (IN) binding loop from its cellular cofactor LEDGF/p75 (residues 361-370). All peptides in the library had the same primary sequence, and differed only in their conformation. Library screening revealed that the ring size and linker structure had a huge effect on the conformation, binding and activity of the peptides. One of the cyclic peptides, c(MZ 4-1), was a potent and stable inhibitor of IN activity in vitro and in cells even after 8 days. The NMR structure of c(MZ 4-1) showed that it obtains a bioactive conformation that is similar to the parent site in LEDGF/p75.  相似文献   

10.
Retroviral integration in vivo is mediated by preintegration complexes (PICs) derived from infectious virions. In addition to the integrase enzyme and cDNA substrate, PICs contain a variety of viral and host cell proteins. Whereas two different cell proteins, high-mobility group protein A1 (HMGA1) and the barrier-to-autointegration factor (BAF), were identified as integration cofactors based on activities in in vitro PIC assays, only HMGA1 was previously identified as a PIC component. By using antibodies against known viral and cellular PIC components, we demonstrate here functional coimmunoprecipitation of endogenous BAF protein with human immunodeficiency virus type 1 (HIV-1) PICs. Since integrase protein and integration activity were also coimmunoprecipitated by anti-BAF antibodies, we conclude that BAF is a component of HIV-1 PICs. These data are consistent with the model that BAF functions as an integration cofactor in vivo.  相似文献   

11.
12.
13.
We studied human immunodeficiency virus, type 1 (HIV-1) integrase (IN) complexes derived from nuclei of human cells stably expressing the viral protein from a synthetic gene. We show that in the nuclear extracts IN exists as part of a large distinct complex with an apparent Stokes radius of 61 A, which dissociates upon dilution yielding a core molecule of 41 A. We isolated the IN complexes from cells expressing FLAG-tagged IN and demonstrated that the 41 A core is a tetramer of IN, whereas 61 A molecules are composed of IN tetramers associated with a cellular protein with an apparent molecular mass of 76 kDa. This novel integrase interacting protein was found to be identical to lens epithelium-derived growth factor (LEDGF/p75), a protein implicated in regulation of gene expression and cellular stress response. HIV-1 IN and LEDGF co-localized in the nuclei of human cells stably expressing IN. Furthermore, recombinant LEDGF robustly enhanced strand transfer activity of HIV-1 IN in vitro. Our findings indicate that the minimal IN molecule in human cells is a homotetramer, suggesting that at least an octamer of IN is required to accomplish coordinated integration of both retroviral long terminal repeats and that LEDGF is a cellular factor involved in this process.  相似文献   

14.
15.
Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-factor for integration. Since LEDGF/p75 plays an important role in HIV integration, disruption of the LEDGF/p75 interaction with IN has provided a special interest for anti-HIV agent discovery. In this work, we reported that a benzoic acid derivative, 4-[(5-bromo-4-{[2,4-dioxo-3-(2-oxo-2-phenylethyl)-1,3-thiazolidin-5-ylidene]methyl}-2-ethoxyphenoxy)methyl]benzoic acid (D77) could potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution thus exhibiting antiretroviral activity. Molecular docking with site-directed mutagenesis analysis and surface plasmon resonance (SPR) binding assays has clarified possible binding mode of D77 against HIV-1 integrase. As the firstly discovered small molecular compound targeting HIV-1 integrase interaction with LEDGF/p75, D77 might supply useful structural information for further anti-HIV agent discovery.  相似文献   

16.
Murine oncoretroviruses and lentiviruses pseudotyped with envelope proteins of alphaviruses have shown great potential in providing broad-host-range, stable vectors for gene therapy. Unlike vesicular stomatitis virus G protein-pseudotyped vectors, they are not neutralized by complement and do not appear to cause significant tissue damage. Here we report the production of murine oncoretroviral and lentiviral vectors pseudotyped with the envelope proteins of Venezuelan equine encephalitis virus (VEEV). When optimized, these pseudotypes achieve titers of 106 CFU/ml, which is 5- to 10-fold higher than for previous vectors pseudotyped with envelope proteins from other alphaviruses. They can also be concentrated or stored frozen without significant loss of infectivity. Consistent with the tropism of the envelope donor, they transduce a broad array of human cell types, including lung epithelial cells, neuronal cells, lymphocytes, and fibroblasts. Infection is blocked by agents that inhibit endosomal acidification and by neutralizing antibodies against VEEV. These observations indicate that the pseudotypes present native epitopes on their surface and enter through a VEEV envelope-dependent, pH-sensitive mechanism. The fact that the pseudotypes are unaffected by sera reactive to other alphaviruses indicates that they may be useful when successive gene therapies are required in the presence of an active immune response. In this case, having an array of alphavirus-based vectors with similar cell tropisms would be highly advantageous. These vectors may also be useful in diagnostic assays in which infectious VEEV is undesirable but immune reactivity to native epitopes is required.  相似文献   

17.
A lens epithelium-derived growth factor (LEDGF)/p75 peptide was evaluated for human immunodeficiency virus type 1 integrase (IN) inhibitory activity. The LEDGF/p75 peptide modestly inhibited IN catalysis and was dependent on IN-DNA assembly. The peptide was also effective at disrupting LEDGF/p75-IN complex formation. We next investigated the activity of the LEDGF/p75 peptide on IN mutant proteins that are unable to catalyze the DNA strand transfer reaction. The LEDGF/p75 peptide displayed an increased potency on these IN proteins, from 5-fold to greater than 10-fold, indicating the IN multimeric state greatly influences the peptide inhibitory effects. These results shed light on IN-DNA multimeric formation, and how this process influences the LEDGF/p75-IN interaction.  相似文献   

18.
19.
To replicate, a retrovirus must integrate a DNA copy of its RNA genome into a chromosome of the host cell. Integration is not random in the host genome but favors particular regions, and preferences differ among retroviruses. Several mechanisms might play a part in this favored integration targeting: (i) open chromatin might be preferentially accessible for viral DNA integration; (ii) DNA replication during cell division might facilitate access of integration complexes to favored sites; and (iii) cellular proteins bound to the host chromosome might tether integration complexes to favored regions. This review summarizes recent advances in understanding the mechanisms of retroviral integration, focusing on LEDGF/p75--the first cellular protein shown to have a role in directing HIV DNA integration. Studies on LEDGF/p75 indicate that it directs HIV integration site selection by a tethering interaction, whereas the chromatin accessibility or cell cycle models are less well supported. Understanding viral integration will help improve the safety of retrovirus-based vectors used in gene therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号