首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hb entrapped in the Konjak glucomannan (KGM) film could transfer electrons directly to an edge-plane pyrolytic graphite (EPG) electrode, corresponding to the redox couple of Fe(III)/Fe(II). The redox properties of Hb, such as formal potential, electron transfer rate constant, the stability of the redox state of protein and redox Bohr effect, were characterized by cyclic voltammetry and square wave voltammetry. The stable Hb-KGM/EPG gave analytically useful electrochemical catalytic responses to oxygen, hydrogen peroxide and nitrite.  相似文献   

2.
Ellis KE  Seidel J  Einsle O  Elliott SJ 《Biochemistry》2011,50(21):4513-4520
Bacterial cytochrome c peroxidase (CcP) enzymes are diheme redox proteins that reduce hydrogen peroxide to water. They are canonically characterized by a peroxidatic (called L, for "low reduction potential") active site heme and a secondary heme (H, for "high reduction potential") associated with electron transfer, and an enzymatic activity that exists only when the H-heme is prereduced to the Fe(II) oxidation state. The prereduction step results in a conformational change at the active site itself, where a histidine-bearing loop will adopt an "open" conformation allowing hydrogen peroxide to bind to the Fe(III) of the L-heme. Notably, the enzyme from Nitrosomonas europaea does not require prereduction. Previously, we have shown that protein film voltammetry (PFV) is a highly useful tool for distinguishing the electrocatalytic mechanisms of the Nitromonas type of enzyme from other CcPs. Here, we apply PFV to the recently described enzyme from Geobacter sulfurreducens and the Geobacter S134P/V135K double mutant, which have been shown to be similar to members of the canonical subclass of peroxidases and the Nitrosomonas subclass of enzymes, respectively. Here we find that the wild-type Geobacter CcP is indeed similar electrochemically to the bacterial CcPs that require reductive activation, yet the S134P/V135K mutant shows two phases of electrocatalysis: one that is low in potential, like that of the wild-type enzyme, and a second, higher-potential phase that has a potential dependent upon substrate binding and pH yet is at a potential that is very similar to that of the H-heme. These findings are interpreted in terms of a model in which rate-limiting intraprotein electron transfer governs the catalytic performance of the S134P/V135K enzyme.  相似文献   

3.
Cytochrome c nitrite reductase is a multicenter enzyme that uses a five-coordinated heme to perform the six-electron reduction of nitrite to ammonium. In the sulfate reducing bacterium Desulfovibrio desulfuricans ATCC 27774, the enzyme is purified as a NrfA2NrfH complex that houses 14 hemes. The number of closely-spaced hemes in this enzyme and the magnetic interactions between them make it very difficult to study the active site by using traditional spectroscopic approaches such as EPR or UV-Vis. Here, we use both catalytic and non-catalytic protein film voltammetry to simply and unambiguously determine the reduction potential of the catalytic heme over a wide range of pH and we demonstrate that proton transfer is coupled to electron transfer at the active site.  相似文献   

4.
Judy Hirst 《BBA》2006,1757(4):225-239
Protein film voltammetry, the direct electrochemistry of redox enzymes and proteins, provides precise and comprehensive information on complicated reaction mechanisms. By controlling the driving force for a reaction (using the applied potential) and monitoring the reaction in real time (using the current), it allows thermodynamic and kinetic information to be determined simultaneously. Two challenges are inherent to protein film voltammetry: (i) to adsorb the protein or enzyme in a native and active configuration on the electrode surface, and (ii) to understand and interpret voltammetric results on both a qualitative and quantitative level, allowing mechanistic models to be proposed and rigorous experiments to test these models to be devised. This review focuses on the second of these two challenges. It describes how to use protein film voltammetry to derive mechanistic and biochemically relevant information about redox proteins and enzymes, and how to evaluate and interpret voltammetric results. Selected key studies are described in detail, to illustrate their underlying principles, strategies and physical interpretations.  相似文献   

5.
Protein film voltammetry, the direct electrochemistry of redox enzymes and proteins, provides precise and comprehensive information on complicated reaction mechanisms. By controlling the driving force for a reaction (using the applied potential) and monitoring the reaction in real time (using the current), it allows thermodynamic and kinetic information to be determined simultaneously. Two challenges are inherent to protein film voltammetry: (i) to adsorb the protein or enzyme in a native and active configuration on the electrode surface, and (ii) to understand and interpret voltammetric results on both a qualitative and quantitative level, allowing mechanistic models to be proposed and rigorous experiments to test these models to be devised. This review focuses on the second of these two challenges. It describes how to use protein film voltammetry to derive mechanistic and biochemically relevant information about redox proteins and enzymes, and how to evaluate and interpret voltammetric results. Selected key studies are described in detail, to illustrate their underlying principles, strategies and physical interpretations.  相似文献   

6.
The mechanism of catalytic hydrogen evolution and oxidation by Allochromatium vinosum [NiFe]-hydrogenase has been studied by protein film voltammetry (PFV) with the enzyme adsorbed at a pyrolytic graphite edge electrode. By analyzing the entire shapes of catalytic voltammograms, the energetics of the catalytic cycles (reduction potentials and acidity constants of the active states), including the detailed profiles of activity against pH and the sequences of proton and electron transfers, have been determined, and these are discussed with respect to the mechanism. PFV, which probes rates as a continuous function of the electrochemical potential (i.e., in the "potential domain"), is proven to be an invaluable tool for determining the redox properties of an active site in the presence of its substrate, at room temperature, and during turnover. This is especially relevant in the case of the active states of hydrogenase, since one of its substrates (the proton) is always present at significant levels in the titration medium at physiological pH values.  相似文献   

7.
Hoke KR  Cobb N  Armstrong FA  Hille R 《Biochemistry》2004,43(6):1667-1674
Arsenite oxidase from Alcaligenes faecalis, an unusual molybdoenzyme that does not exhibit a Mo(V) EPR signal during oxidative-reductive titrations, has been investigated by protein film voltammetry. A film of the enzyme on a pyrolytic graphite edge electrode produces a sharp two-electron signal associated with reversible reduction of the oxidized Mo(VI) molybdenum center to Mo(IV). That reduction or oxidation of the active site occurs without accumulation of Mo(V) is consistent with the failure to observe a Mo(V) EPR signal for the enzyme under a variety of conditions and is indicative of an obligate two-electron center. The reduction potential for the molybdenum center, 292 mV (vs SHE) at pH 5.9 and 0 degrees C, exhibits a linear pH dependence for pH 5-10, consistent with a two-electron reduction strongly coupled to the uptake of two protons without a pK in this range. This suggests that the oxidized enzyme is best characterized as having an L(2)MoO(2) rather than L(2)MoO(OH) center in the oxidized state and that arsenite oxidase uses a "spectator oxo" effect to facilitate the oxo transfer reaction. The onset of the catalytic wave observed in the presence of substrate correlates well with the Mo(VI/IV) potential, consistent with catalytic electron transport that is limited only by turnover at the active site. The one-electron peaks for the iron-sulfur centers are difficult to observe by protein film voltammetry, but spectrophotometric titrations have been carried out to measure their reduction potentials: at pH 6.0 and 20 degrees C, that of the [3Fe-4S] center is approximately 260 mV and that of the Rieske center is approximately 130 mV.  相似文献   

8.
The electrochemistry of the redox proteins, cytochrome c, cytochrome b5, plastocyanin and ferredoxin at modified gold electrodes has been examined on the basis that electron transfer takes place at electroactive sites which are microscopic in size. Using this model, it is now proposed that electrochemistry of these proteins occurs at suitably modified sites with fast rates at potentials near the standard redox potential. The microscopic model implies that redox proteins and enzymes take part in fast electron transfer at specific sites on the electrode, other sites being completely ineffective. This form of molecular recognition, i.e. the ability to discriminate between the different sites on an electrode surface, mimics homogeneous redox reactions wherein redox active proteins 'recognize' their biological partners in a very specific sense. Previously, protein electrochemistry has been interpreted via use of a macroscopic model in which the proteins are transported to the electrode surface by linear diffusion followed by quasi-reversible or irreversible electron transfer to the electrode surface. The microscopic model, which assumes that the movement of the protein occurs predominantly by radial diffusion to very small sites, would appear to explain the data more satisfactorily and be consistent with biologically important, homogeneous redox reactions which are known to be fast.  相似文献   

9.
Protein film voltammetry (PFV) of Escherichia coli dimethyl sulfoxide (DMSO) reductase (DmsABC) adsorbed at a graphite electrode reveals that the catalytic activity of this complex Mo-pterin/Fe-S enzyme is optimized within a narrow window of electrode potential. The upper and lower limits of this window are determined from the potential dependences of catalytic activity in reducing and oxidizing directions; i.e., for reduction of DMSO (or trimethylamine-N-oxide) and oxidation of trimethylphosphine (PMe(3)). At either limit, the catalytic activity drops despite the increase in driving force: as the potential is lowered below -200 mV (pH 7.0-8.9), the rate of reduction of DMSO decreases abruptly, while for PMe(3), an oxidative current is observed that vanishes as the potential is raised above +20 mV (pH 9.0). Analysis of the waveshapes reveals that both activity thresholds result from one-electron redox reactions that arise, most likely, from groups within the enzyme; if so, they represent "switches" that reflect the catalytic mechanism and may be of physiological relevance. The potential window of activity coincides approximately with the appearance of the Mo(V) EPR signal observed in potentiometric titrations, suggesting that crucial stages of catalysis are facilitated while the active site is in the intermediate Mo(V) oxidation state.  相似文献   

10.
Trevor D. Rapson 《BBA》2008,1777(10):1319-1325
Under hydrodynamic electrochemical conditions with slow cyclic voltammetry sweep rates we have been able to probe catalytic events at the molybdenum active site of sulfite dehydrogenase (SDH) from Starkeya novella adsorbed on an edge plane graphite electrode within a polylysine film. The electrochemically driven catalytic behaviour of SDH mirrors that seen in solution assays suggesting that the adsorbed enzyme retains its native activity. However, at high sulfite concentrations, the voltammetric waveform transforms from the expected sigmoidal profile to a peak-shaped response, similar to that reported for the molybdenum enzymes DMSO reductase and nitrate reductase (NarGHI and NapAB) where a redox reaction at the active site has been associated with a switch to lower activity at high overpotentials. This is the first time a similar phenomenon has been observed in a Mo-containing oxidase/dehydrogenase, which raises a number of interesting mechanistic problems. The potential at which the activity of SDH becomes attenuated only emerges at saturating substrate conditions and occurs at a potential (ca. + 320mV vs NHE) well removed from any known redox couple in the enzyme. These results cannot be explained by the same mechanism adopted for DMSO reductase and nitrate reductase catalysis.  相似文献   

11.
Cellobiose dehydrogenase (CDH) is a redox protein containing two electron transfer centers; a flavin coenzyme performing a two-electron transfer reaction and an iron-heme coenzyme facilitating single-electron transfer. Purified CDH from Phanerochaete chrysosporium was immobilized on a pyrolytic graphite electrode and electron transfer from cellobiose to the electrode was generated. With cellobiose present during cyclic voltammetry, this novel enzyme/electrode system exhibited sharp, stable oxidation peaks with slower, though equivalent, reduction peaks. During cyclic voltammetry without substrate, the enzyme was rapidly oxidized during the initial scan, with no corresponding enzyme reduction during the reducing half of the cycle. After resting for several hours in aqueous buffer, the full oxidation current appeared again. These results suggest that the CDH is reduced by water splitting, albeit at a slow rate.  相似文献   

12.
Many enzymes involved in bioenergetic processes contain chains of redox centers that link the protein surface, where interaction with electron donors or acceptors occurs, to a secluded catalytic site. In numerous cases these redox centers can transfer only single electrons even when they are associated to catalytic sites that perform two-electron chemistry. These chains provide no obvious contribution to enhance chemiosmotic energy conservation, and often have more redox centers than those necessary to hold sufficient electrons to sustain one catalytic turnover of the enzyme. To investigate the role of such a redox chain we analyzed the transient kinetics of fumarate reduction by two flavocytochromes c3 of Shewanella species while these enzymes were being reduced by sodium dithionite. These soluble monomeric proteins contain a chain of four hemes that interact with a flavin adenine dinucleotide (FAD) catalytic center that performs the obligatory two electron–two proton reduction of fumarate to succinate. Our results enabled us to parse the kinetic contribution of each heme towards electron uptake and conduction to the catalytic center, and to determine that the rate of fumarate reduction is modulated by the redox stage of the enzyme, which is defined by the number of reduced centers. In both enzymes the catalytically most competent redox stages are those least prevalent in a quasi-stationary condition of turnover. Furthermore, the electron distribution among the redox centers during turnover suggested how these enzymes can play a role in the switch between respiration of solid and soluble terminal electron acceptors in the anaerobic bioenergetic metabolism of Shewanella.  相似文献   

13.
Cyclic voltammetry was used for simultaneous formation and immobilization of nickel oxide nano-scale islands and catalase on glassy carbon electrode. Electrodeposited nickel oxide may be a promising material for enzyme immobilization owing to its high biocompatibility and large surface. The catalase films assembled on nickel oxide exhibited a pair of well defined, stable and nearly reversible CV peaks at about -0.05 V vs. SCE at pH 7, characteristic of the heme Fe (III)/Fe (II) redox couple. The formal potential of catalase in nickel oxide film were linearly varied in the range 1-12 with slope of 58.426 mV/pH, indicating that the electron transfer is accompanied by single proton transportation. The electron transfer between catalase and electrode surface, (k(s)) of 3.7(+/-0.1) s(-1) was greatly facilitated in the microenvironment of nickel oxide film. The electrocatalytic reduction of hydrogen peroxide at glassy carbon electrode modified with nickel oxide nano-scale islands and catalase enzyme has been studied. The embedded catalase in NiO nanoparticles showed excellent electrocatalytic activity toward hydrogen peroxide reduction. Also the modified rotating disk electrode shows good analytical performance for amperometric determination of hydrogen peroxide. The resultant catalase/nickel oxide modified glassy carbon electrodes exhibited fast amperometric response (within 2 s) to hydrogen peroxide reduction (with a linear range from 1 microM to 1 mM), excellent stability, long term life and good reproducibility. The apparent Michaelis-Menten constant is calculated to be 0.96(+/-0.05)mM, which shows a large catalytic activity of catalase in the nickel oxide film toward hydrogen peroxide. The excellent electrochemical reversibility of redox couple, high stability, technical simplicity, lake of need for mediators and short preparations times are advantages of this electrode. Finally the activity of biosensor for nitrite reduction was also investigated.  相似文献   

14.
The ability to catalyse an electrode reaction via direct (mediatorless) electron transfer has been demonstrated for a number of redox enzymes. In the case of mediatorless electron transfer, the electron is transferred directly from the electrode to the substrate molecule via the active site of the enzyme, or vice versa. The electron itself is the second substrate for the reaction. An important point characterizing bioelectrocatalysis is the catalytic removal of the reaction over-voltage. Therefore the enzyme attached to the electrode is able to catalyse electrode reaction and forms a 'molecular transducer'. The substrate can be detected by potentiometric measurement of the removal of reaction over-voltage. The enzyme laccase is able to catalyse the reaction of oxygen electroreduction. Therefore a laccase molecular layer attached to the electrode surface forms an oxygen transducer. The formation of the layer results in a change of the electrocatalytic feature of the electrode. Laccase label coupled with either ligand or receptor allows the detection of ligand-receptor complex formation/dissociation on the electrode surface. The detection is virtually reagentless. The substrates for the reaction are molecular oxygen and the electron itself. Numerous reagentless immunosensors of different formats (competitive, displacement and sandwich) have been developed, as well as the reagentless detection system for immunofiltration/immunochromatography.  相似文献   

15.
Barker CD  Reda T  Hirst J 《Biochemistry》2007,46(11):3454-3464
Complex I (NADH:ubiquinone oxidoreductase) from bovine heart mitochondria contains 45 different subunits and nine redox cofactors. NADH is oxidized by a noncovalently bound flavin mononucleotide (FMN), then seven iron-sulfur clusters transfer the two electrons to quinone, and four protons are pumped across the inner mitochondrial membrane. Here, we use protein film voltammetry to investigate the mechanisms of NADH oxidation and NAD+ reduction in the simplest catalytically active subcomplex of complex I, the flavoprotein (Fp) subcomplex. The Fp subcomplex was prepared using chromatography and contained the 51 and 24 kDa subunits, the FMN, one [4Fe-4S] cluster, and one [2Fe-2S] cluster. The reduction potential of the FMN in the enzyme's active site is lower than that of free FMN (thus, the oxidized state of the FMN is most strongly bound) and close to the reduction potential of NAD+. Consequently, the catalytic transformation is reversible. Electrocatalytic NADH oxidation by subcomplex Fp can be explained by a model comprising substrate mass transport, the Michaelis-Menten equation, and interfacial electron transfer kinetics. The difference between the "catalytic" potential and the FMN potential suggests that the flavin is reoxidized before NAD+ is released or that intramolecular electron transfer from the flavin to the [4Fe-4S] cluster influences the catalytic rate. NAD+ reduction displays a marked activity maximum, below which the catalytic rate decreases sharply as the driving force increases. Two possible models reproduce the observed catalytic waveshapes: one describing an effect from reducing the proximal [2Fe-2S] cluster and the other the enhanced catalytic ability of the semiflavin state.  相似文献   

16.
Oxalate decarboxylase from Bacillus subtilis is a binuclear Mn-dependent acid stress response enzyme that converts the mono-anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π-stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long-range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5-hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5-hydroxytryptophan with its hydroxyl proton removed. 5-Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N-terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long-range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5-hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins.  相似文献   

17.
Protein film voltammetry is used to probe the energetics of electron transfer and substrate binding at the active site of a respiratory flavoenzyme--the membrane-extrinsic catalytic domain of Escherichia coli fumarate reductase (FrdAB). The activity as a function of the electrochemical driving force is revealed in catalytic voltammograms, the shapes of which are interpreted using a Michaelis-Menten model that incorporates the potential dimension. Voltammetric experiments carried out at room temperature under turnover conditions reveal the reduction potentials of the FAD, the stability of the semiquinone, relevant protonation states, and pH-dependent succinate--enzyme binding constants for all three redox states of the FAD. Fast-scan experiments in the presence of substrate confirm the value of the two-electron reduction potential of the FAD and show that product release is not rate limiting. The sequence of binding and protonation events over the whole catalytic cycle is deduced. Importantly, comparisons are made with the electrocatalytic properties of SDH, the membrane-extrinsic catalytic domain of mitochondrial complex II.  相似文献   

18.
Gwyer JD  Richardson DJ  Butt JN 《Biochemistry》2004,43(47):15086-15094
Cytochrome c nitrite reductase is a dimeric decaheme-containing enzyme that catalyzes the reduction of nitrite to ammonium. The contrasting effects of two inhibitors on the activity of this enzyme have been revealed, and defined, by protein film voltammetry (PFV). Azide inhibition is rapid and reversible. Variation of the catalytic current magnitude describes mixed inhibition in which azide binds to the Michaelis complex (approximately 40 mM) with a lower affinity than to the enzyme alone (approximately 15 mM) and leads to complete inhibition of enzyme activity. The position of the catalytic wave reports tighter binding of azide when the active site is oxidized (approximately 39 microM) than when it is reduced. By contrast, binding and release of cyanide are sluggish. The higher affinity of cyanide for reduced versus oxidized forms of nitrite reductase is immediately revealed, as is the presence of two sites for cyanide binding and inhibition of the enzyme. Formation of the monocyano complex by reduction of the enzyme followed by a "rapid" scan to high potentials captures the activity-potential profile of this enzyme form and shows it to be distinct from that of the uninhibited enzyme. The biscyano complex is inactive. These studies demonstrate the complexity that can be associated with inhibitor binding to redox enzymes and illustrate how PFV readily captures and deconvolves this complexity through its impact on the catalytic properties of the enzyme.  相似文献   

19.
The direct voltammetry and electrocatalytic properties of catalase, which was adsorbed on the surface of multiwall carbon nanotubes (MWCNTs), was investigated. A pair of well-defined and nearly reversible cyclic voltammetry peaks for Fe(III)/Fe(II) redox couple of catalase adsorbed on the surface of MWCNTs at approximately -0.05 V versus reference electrode in pH 6.5 buffer solution, indicating the direct electron transfer between catalase and electrode. The surface coverage of catalase immobilized on MWCNTs glassy carbon electrode was approximately 2.4x10(-10) molcm-2. The transfer coefficient (alpha) was calculated to be 0.4, and the heterogeneous electron transfer rate constant was 80 s-1 in pH 7, indicating great facilitation of the electron transfer between catalase and MWCNTs adsorbed on the electrode surface. The formal potential of catalase Fe(III)/Fe(II) couple in MWCNTs film had a linear relationship with pH values between 2 and 11 with a slope of 58 mV/pH, showing that the electron transfer is accompanied by single proton transportation. Catalase adsorbed on MWCNTs exhibits a remarkable electrocatalytic activity toward the reduction of oxygen and hydrogen peroxide. The value for calculated Michaelis-Menten constant (1.70 mM) was high, indicating the potential applicability of the films as a new type of reagentless biosensor based on the direct electrochemistry of the catalase enzyme.  相似文献   

20.
For the first time glucose oxidase (GOx) was successfully co-deposited on nickel-oxide (NiO) nanoparticles at a glassy carbon electrode. In this paper we present a simple fabrication method of biosensor which can be easily operated without using any specific reagents. Cyclic voltammetry was used for electrodeposition of NiO nanoparticle and GOx immobilization. The direct electron transfer of immobilized GOx displays a pair of well defined and nearly reversible redox peaks with a formal potential (E(0')) of -0.420 V in pH 7 phosphate buffer solution and the response shows a surface controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (k(s)) of GOx immobilized on NiO film glassy carbon electrode are 9.45 x 10(-13)mol cm(-2) and 25.2+/-0.5s(-1), indicating the high enzyme loading ability of the NiO nanoparticles and great facilitation of the electron transfer between GOx and NiO nanoparticles. The biosensor shows excellent electrocatalytical response to the oxidation of glucose when ferrocenmethanol was used as an artificial redox mediator. Furthermore, the apparent Michaelis-Menten constant 2.7 mM, of GOx on the nickel oxide nanoparticles exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. In addition, this glucose biosensor shows fast amperometric response (3s) with the sensitivity of 446.2nA/mM, detection limit of 24 microM and wide concentration range of 30 microM to 5mM. This biosensor also exhibits good stability, reproducibility and long life time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号