首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a reaction-diffusion-advection model for the dynamics of populations under biological control. A control agent is assumed to be a predator species that has the ability to perceive the heterogeneity of pest distribution. The advection term represents the predator density movement according to a basic prey taxis assumption: acceleration of predators is proportional to the prey density gradient. The prey population reproduces logistically, and the local population interactions follow the Holling Type II trophic function. On the scale of the population, our spatially explicit approach subdivides the predation process into random movement represented by diffusion, directed movement described by prey taxis, local prey encounters, and consumption modeled by the trophic function. Thus, our model allows studying the effects of large-scale predator spatial activity on population dynamics. We show under which conditions spatial patterns are generated by prey taxis and how this affects the predator ability to maintain the pest population below some economic threshold. In particular, intermediate taxis activity can stabilize predator-pest populations at a very low level of pest density, ensuring successful biological control. However, very intensive prey taxis destroys the stability, leading to chaotic dynamics with pronounced outbreaks of pest density.  相似文献   

2.
3.
Intraguild predation (IGP), the interaction between species that eat each other and compete for shared resources, is ubiquitous in nature. We document its occurrence across a wide range of taxonomic groups and ecosystems with particular reference to non-indigenous species and agricultural pests. The consequences of IGP are complex and difficult to interpret. The purpose of this paper is to provide a modelling framework for the analysis of IGP in a spatial context. We start by considering a spatially homogeneous system and find the conditions for predator and prey to exclude each other, to coexist and for alternative stable states. Management alternatives for the control of invasive or pest species through IGP are presented for the spatially homogeneous system. We extend the model to include movement of predator and prey. In this spatial context, it is possible to switch between alternative stable steady states through local perturbations that give rise to travelling waves of extinction or control. The direction of the travelling wave depends on the details of the nonlinear intraguild interactions, but can be calculated explicitly. This spatial phenomenon suggests means by which invasions succeed or fail, and yields new methods for spatial biological control. Freshwater case studies are used to illustrate the outcomes.  相似文献   

4.
Invasion theory and biological control   总被引:7,自引:0,他引:7  
Recent advances in the mathematical theory of invasion dynamics have much to offer to biological control. Here we synthesize several results concerning the spatiotemporal dynamics that occur when a biocontrol agent spreads into a population of an invading pest species. We outline conditions under which specialist and generalist predators can influence the density and rate of spatial spread of the pest, including the rather stringent conditions under which a specialist predator can successfully reverse a pest invasion. We next discuss the connections between long distance dispersal and invasive spread, emphasizing the different consequences of fast spreading pests and predators. Recent theory has considered the effects of population stage-structure on invasion dynamics, and we discuss how population demography affects the biological control of invading pests. Because low population densities generally characterize early stages of an invasion, we discuss the lessons invasion theory teaches concerning the detectability of invasions. Stochasticity and density-dependent dynamics are common features of many real invasions, influencing both the spatial character (e.g. patchiness) of pest invasions and the success of biocontrol agents. We conclude by outlining theoretical results delineating how stochastic effects and complex dynamics generated by density dependence can facilitate or impede biological pest control.  相似文献   

5.
Organically managed agroecosystems rely in part on biological control to prevent pest outbreaks. Generalist predators (Araneae, Carabidae and Staphylinidae) are a major component of the natural enemy community in agroecosystems. We assessed the seasonal dynamics of major generalist predator groups in conventionally and organically managed grass–clover fields that primarily differed by fertilisation strategy. We further established an experiment, manipulating the abundant wolf spider genus Pardosa, to identify the importance of these predators for herbivore suppression in the same system and growth period. Organic management significantly enhanced ground‐active spider numbers early and late in the growing season, with potentially positive effects of plant cover and non‐pest decomposer prey. However, enhancing spider numbers in the field experiment did not improve biological control in organically managed grass–clover fields. Similar to the survey results, reduced densities of Pardosa had no short‐term effect on any prey taxa; however, spider guild structure changed in response to Pardosa manipulation. In the presence of fewer Pardosa, other ground‐running spiders were more abundant; therefore, their impact on herbivore numbers may have been elevated, possibly cancelling increases in herbivore numbers because of reduced predation by Pardosa. Our results indicate positive effects of organic farming on spider activity density; however, our survey data and the predator manipulation experiment failed to find evidence that ground‐running spiders reduced herbivore numbers. We therefore suggest that a positive impact of organic fertilisers on wolf spiders in grass–clover agroecosystems may not necessarily improve biological control when compared with conventional farming.  相似文献   

6.
Species’ functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.  相似文献   

7.
We propose a biological pest control system that invests part of a crop in feeding a pest in a cage. The fed pest maintains a predator that attacks the pest in the target area (i.e., the area for storing or growing crops). The fed pest cannot leave the cage nor the target pest cannot enter the cage. The predator, however, can freely attack both the fed and target pests in the target area. By introducing a refuge in the cage against the predator for the fed pest, the fed pest and predator may be stably sustained. In this study, we analyzed the potential performance of this system by modeling the population dynamics of the target pest, fed pest, and predator as differential equations. First, we show analytically that the target pest can be suppressed at extremely low abundance by adjusting both refuge efficiency and crop investment. Second, we show numerically that crop damage by the pest may be effectively suppressed by investing only small amounts of the crop. Third, we show numerically that the magnitude of required crop investment can be estimated by an index comprising of the predator's searching cost for prey and the relative growth efficiency of the predator with respect to the pest. Even if the system structure is changed or its population dynamics is modeled based on host–parasitoid interactions, crop damage can be suppressed effectively by small amounts of crop investment.  相似文献   

8.
Suppression of a target prey by a predator can depend on its surrounding community, including the presence of nontarget, alternative prey. Basic theoretical models of two prey species that interact only via a shared predator predict that adding an alternative prey should increase predator numbers and ultimately lower target pest densities as compared to when the target pest is the only prey. While this is an alluring prediction, it does not explain the numerous responses empirically observed. To better understand and predict the indirect interactions produced by shared predation, we explore how additional prey species affect three broad ecological mechanisms, the predator's reproductive, movement, and functional responses. Specifically, we review current theoretical models of shared predation by focusing on these mechanisms, and make testable predictions about the effects of shared predation. We find that target predation is likely to be higher in the two prey system because of predator reproduction, especially when: predators are prey limited, alternative or total prey density is high, or alternative prey are available over time. Target predation may also be greater because of predator movement, but only under certain movement rules and spatial distributions. Predator foraging behavior is most likely to cause lower target predation in the two-prey system, when per capita predation is limited by something other than prey availability. It is clear from this review that no single theoretical generalization will accurately predict community-level effects for every system. However, we can provide testable hypotheses for future empirical and theoretical investigations of indirect interactions and help enhance their potential use in biological control.  相似文献   

9.
Zhang H  Georgescu P  Chen L 《Bio Systems》2008,93(3):151-171
From a practical point of view, the most efficient strategy for pest control is to combine an array of techniques to control the wide variety of potential pests that may threaten crops in an approach known as integrated pest management (IPM). In this paper, we propose a predator-prey (pest) model of IPM in which pests are impulsively controlled by means of spraying pesticides (the chemical control) and releasing natural predators (the biological control). It is assumed that the biological and chemical control are used with the same periodicity, but not simultaneously. The functional response of the predator is allowed to be predator-dependent, in the form of a Beddington-DeAngelis functional response, rather than to have a perhaps more classical prey-only dependence. The local and global stability of the pest-eradication periodic solution, as well as the permanence of the system, are obtained under integral conditions which are shown to have biological significance. In a certain limiting case, it is shown that a nontrivial periodic solution emerges via a supercritical bifurcation. Finally, our findings are confirmed by means of numerical simulations.  相似文献   

10.
Conservation biological control programs seek to increase natural enemy densities through the adoption of more benign farming practices, under the assumption that higher predator densities will lead to more effective pest suppression. However, predator–predator interference may lead to diminishing returns in improved pest control as predator densities increase. We examined the relationship between predator density and predation rates on Colorado potato beetle eggs in production potato fields. These potato fields naturally spanned a 10-fold range in predator density, due to differences in management practices. Periodically through the growing season we simultaneously measured predator densities and subjected sentinel eggs masses to predation, allowing us to correlate predator density and egg predation for each field on each sample date. Egg predation rates were significantly positively correlated with total predator densities, a correlation that was not improved when predator densities were scaled to reflect differences in feeding rates on potato beetle eggs of the constituent predator taxa. There was no correlation between per-capita egg predation rates and predator density, and so no evidence that predator interference increased with increasing predator density. We divided predators into six dominant taxa—dwarf spiders, crab spiders, minute pirate bugs, big-eyed bugs, damsel bugs, and Lygus bugs (together constituting 93% of all predators collected), and a seventh group, “other predators” that included all other, less common, taxa—and examined correlations between all predator combinations and egg predation rates. The highest correlation was between combined densities of the six most common predator taxa, excluding only the “other predators” grouping. This suggests that predators may be largely equivalent in their impact on Colorado potato beetle eggs, and that field scouts might be able to ignore uncommon predator taxa when sampling for natural enemies.  相似文献   

11.
The augmentation of natural enemies against agricultural pests is a common tactic undertaken to minimize crop damage without the use of chemical pesticides. Failures of this strategy may result from (i) Allee effects acting on biological control agent; (ii) trophic interactions between the released control agent and native species in the local ecosystem; (iii) excessively rapid spreading agents. To investigate the interplay of these mechanisms in pest biocontrol efficiency in the context of intraguild predation (IGP), we develop a one-dimensional dynamical model of a spatial, tritrophic food web with intraguild predation. We show that the agent’s diffusivity (i.e., agent’s dispersal speed), and intraguild predator’s addition of alternative food sources are important factors in determining the success or failure of pest biocontrol. These results are obtained for spatially explicit models by considering the speed of dispersal of the control agent and the pest. Feedback from theoretical models as the one constructed in this work can provide useful guidelines for practitioners in biological control.  相似文献   

12.
We present a Bayesian method for functional response parameter estimation starting from time series of field data on predator–prey dynamics. Population dynamics is described by a system of stochastic differential equations in which behavioral stochasticities are represented by noise terms affecting each population as well as their interaction. We focus on the estimation of a behavioral parameter appearing in the functional response of predator to prey abundance when a small number of observations is available. To deal with small sample sizes, latent data are introduced between each pair of field observations and are considered as missing data. The method is applied to both simulated and observational data. The results obtained using different numbers of latent data are compared with those achieved following a frequentist approach. As a case study, we consider an acarine predator–prey system relevant to biological control problems.  相似文献   

13.
The poinsettia thrips Echinothrips americanus Morgan is a relatively new pest that has spread rapidly worldwide and causes serious damage in both vegetable and ornamental plants. In this study, we investigated if and how effective this pest can be controlled in gerbera by the omnivorous predator Macrolophus pygmaeus (Rambur). Because herbivores on plants can interact through a shared predator, we also investigated how poinsettia thrips control is affected by the presence of the greenhouse whitefly Trialeurodes vaporariorum (Westwood), a pest that commonly coexists with E. americanus in gerbera. In laboratory studies, we found that the predator M. pygmaeus fed on both pests when offered together. Olfactometer tests showed a clear preference of the predators for plants infested by whiteflies but not by thrips. In a greenhouse experiment, densities of both pests on single gerbera plants were reduced to very low levels by the predator, either with both pests present together or alone. Hence, predator‐mediated effects between whiteflies and thrips played only a minor role. The plant feeding of the shared predator probably reduced the dependence of predator survival and reproduction on the densities of the two pests, thereby weakening potential predator‐mediated effects. Thus, M. pygmaeus is a good candidate for biological control of both pests in gerbera. However, further research is needed to investigate pest control at larger scales, when the pests can occur on different plants.  相似文献   

14.
The influence of plant species on the population dynamics of the spider mite pest, Tetranychus urticae, and its predator, Phytoseiulus persimilis, was examined as a prerequisite to effective biological control on ornamental nursery stock. Experiments have been done to investigate how the development, fecundity and movement of T. urticae, and the movement of P. persimilis were affected by plant species. A novel experimental method, which incorporates plant structure, was used to investigate the functional response of P. persimilis. Development times for T. urticae were consistent with published data and did not differ with plant species in a biologically meaningful way. Plant species was shown to have a major influence on fecundity (P < 0.001) and movement of the pest mite (P < 0.01), but no influence on the movement of the predator. The movement of both pest and predator was shown to be related to the density of the adult pest mites on the plant (P < 0.001). Plant structure affected the functional response, particularly in relation to the ability of the predator to locate prey at low densities. The impact of these findings on the effective use of biological control on ornamental nursery stock is discussed.  相似文献   

15.
A few spatiotemporal models of population dynamics are considered in relation to biological invasion and biological control. The patterns of spread in one and two spatial dimensions are studied by means of extensive numerical simulations. We show that, in the case that population multiplication is damped by the strong Allee effect (when the population growth rate becomes negative for small population density), in a certain parameter range the spread can take place not via the intuitively expected circular expanding population front but via motion and interaction of separate patches. Alternatively, the patchy spread can take place in a system without Allee effect as a result of strong environmental noise. We then show that the phenomenon of deterministic patchy invasion takes place ‘at the edge of extinction’ so that a small change of controlling parameters either brings the species to extinction or restores the travelling population fronts. Moreover, we show that the regime of patchy invasion in two spatial dimensions actually takes place when the species go extinct in the corresponding 1-D system.  相似文献   

16.
Models of spatial and temporal dynamics of trophic communities are considered and numerically investigated. Stability of equilibriums of two trophic levels models is analytically studied. Active migrations are described on the bases of idea that acceleration of directed migration of predators is pro-rate the density gradient of prey populations. High migration activity of predators ensures the stability of complex non-uniform spatial regimes even when the abundance of predators is constant. In this case both summarized consumption of preys by predators and total number of preys considerably exceed equilibrium meanings of homogeneous regime, that takes place when predators are not able to migrate directionally. In three levels trophic system plant resource-pest-predator the increase in migration activity of predator leads to the increase of its abundance and the abundance of pest while the biomass of the resource decreases. This result is interpreted as an example of non-effective biological control when predators with high searching ability are used.  相似文献   

17.
In agricultural landscapes, the amount and organization of crops and semi-natural habitats (SNH) have the potential to promote a bundle of ecosystem services due to their influence on ecological community at multiple spatio-temporal scales. SNH are relatively undisturbed and are often source of complementary resources and refuges, therefore supporting more diverse and abundant natural pest enemies. However, the nexus of SNH proportion and organization with pest suppression is not trivial. It is thus crucial to understand how the behavior of pest and natural enemy species, the underlying landscape structure, and their interaction, may influence conservation biological control (CBC). Here, we develop a generative stochastic landscape model to simulate realistic agricultural landscape compositions and configurations of fields and linear elements. Generated landscapes are used as spatial support over which we simulate a spatially explicit predator-prey dynamic model. We find that increased SNH presence boosts predator populations by sustaining high predator density that regulates and keeps pest density below the pesticide application threshold. However, predator presence over all the landscape helps to stabilize the pest population by keeping it under this threshold, which tends to increase pest density at the landscape scale. In addition, the joint effect of SNH presence and predator dispersal ability among hedge and field interface results in a stronger pest regulation, which also limits pest growth. Considering properties of both fields and linear elements, such as local structure and geometric features, provides deeper insights for pest regulation; for example, hedge presence at crop field boundaries clearly strengthens CBC. Our results highlight that the integration of species behaviors and traits with landscape structure at multiple scales is necessary to provide useful insights for CBC.  相似文献   

18.
Environmental perturbations occur in ecosystems as the result of disturbance, which is closely related to ecosystem stability and resilience. To understand how perturbations can affect ecosystems, we constructed a spatially explicit lattice model to simulate the integrative predator–prey–grass relationships. In this model, a predator (or prey) gives birth to offspring, according to a specific birth probability, when it is able to feed on prey (or grass). When a predator or prey animal was initially introduced or newly born, its health state was set at a given high value. This state decreased by 1 with each time step. When the state of an animal decreased to zero, the animal was considered dead and was removed from the system. In this model, the perturbation was defined as the sudden death of some portion of the population. The heterogeneous landscape was characterized by a parameter, H, which controlled the degree of heterogeneity. When H  0.6, the predator population size was positively influenced by the perturbation. However, the perturbation had little effect upon the population sizes of prey or grass, regardless of the value of H.  相似文献   

19.
杨立  李维德 《生态学报》2012,32(6):1773-1782
利用概率元胞自动机模型对空间隐式的、食饵具Allee效应的一类捕食食饵模型进行模拟,发现随着相关参数的变化,种群的空间扩散前沿由连续的扩散波逐渐转变为一种相互隔离的斑块向外扩散,这种斑块扩散现象与以往的扩散模式有所不同。研究结果表明:(1)在斑块扩散的情况下,相关参数的微小变化会导致种群灭绝或者形成连续的扩散波,即斑块扩散发生在种群趋于灭绝和连续扩散之间;(2)当种群的空间扩散方式为斑块扩散时,种群的扩散速度会变慢,与其他扩散方式下的速度有着明显的区别。该研究结果对生物入侵控制和外来物种监测有重要的启发和指导作用。  相似文献   

20.
In this paper we analyze a variation of a standard predator-prey model with type II functional response which represents predator-prey dynamics in the presence of some additional food to the predator. The aim is to study the consequences of providing additional food on the system dynamics. We conclude that handling times for the available foods play a key role in determining the eventual state of the ecosystem. It is interesting to observe that by varying the quality and quantity of additional food we can not only control and limit the prey, but also limit and eradicate the predators. In the context of biological pest control, the results caution the manager on the choice of quality and quantity of the additional food used for this purpose. An arbitrary choice may have opposite effects leading to increase in pest concentration and eradication of the predator. This study offers insight into the possible management strategies that involve manipulation of quality and supply level of additional food to predators, for the benefit of biological control. The theoretical conclusions agree with results of some practical biological control experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号