首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purified Ca2+- and calmodulin-dependent protein kinase from rat brain, which has a M.W. of 120,000 by gel filtration analysis, showed a broad substrate specificity. In addition to myosin light chain from chicken gizzard, the enzyme phosphorylated myelin basic protein, casein and two endogenous substrates in a Ca2+- and calmodulin-dependent manner. In contrast, chicken gizzard myosin light chain kinase exclusively phosphorylated myosin light chain.  相似文献   

2.
The dephosphorylation of phosphorylase kinase by four rabbit skeletal muscle protein phosphatases was studied. The four enzymes used were preparations of protein phosphatases C-I, C-II, H-I, and H-II. Phosphatases C-I, C-II, and H-II were obtained as homogeneous preparations using procedures previously developed. Phosphatase H-I was purified 644-fold from rabbit skeletal muscle for the purposes of this study, and was the major phosphorylase phosphatase activity in the tissue extract. Phosphatases C-I and H-I were relatively specific for removal of the beta subunit phosphate of phosphorylase kinase, this occurring at rates approximately 100 times more rapidly than the removal of the alpha subunit phosphate. In contrast, phosphatases C-II and H-II readily dephosphorylated both the alpha and beta subunits, although the alpha subunit phosphate release occurred at rates about twice that of the beta subunit phosphate. These studies show that skeletal muscle contains two phosphatases capable of acting on phosphorylase kinase, and that these have different specificities as represented by phosphatases H-I and C-I on the one hand, and phosphatases C-II and H-II on the other hand. These studies also provided unequivocal evidence that dephosphorylation of the beta subunit of phosphorylase kinase is solely involved in the inactivation of the cAMP-dependent protein kinase-activated enzyme. When autophosphorylated phosphorylase kinase was used as the substrate, the four phosphatases displayed similar general specificities as they did toward the cAMP-dependent protein kinase-activated enzyme. With none of the phosphatases examined was there any evidence that alpha subunit phosphorylation affected the rate of beta subunit dephosphorylation.  相似文献   

3.
A potent (Ki = 0.01 mM), competitive inhibition of adenylate cyclase activity in particulate fractions of guinea pig lung by 2′O-palmitoyl cyclic AMP has been observed, in striking contrast to the inactivity of cyclic AMP and N6,2′O-dibutyryl cyclic AMP at concentrations of up to 1 mm or more. The possibility that 2′O-palmitoyl cyclic AMP or similar compounds might function as endogenous regulators of the hormonal stimulation of adenylate cyclase activity is discussed. Several 6- and 8- substituted purine 3′,5′-cyclic ribotides also inhibit, probably by direct interaction with enzymatic sulfhydryl groups. A study of the inhibition by purine bases, nucleosides, and 5′ nucleotides suggests that most of the substrate (ATP) binding determinants reside in the nucleoside. The particulate enzyme fractions were found to have lower ATPase activity relative to cyclase activity than cyclase preparations from either guinea pig heart or bronchial smooth muscle. Lung cyclase fractions were maximally stimulated by 5–15 mm Mg2+ in the presence of 1.2 mm ATP as substrate. The percentage of stimulation of cyclase activity by 0.01 mm isoproterenol is dependent on the Mg2+ concentration. Cyclase activity was significantly stimulated not only by the catecholamines (isoproterenol, epinephrine, and norepinephrine) and fluoride ion, but also by prostaglandins E1, E2, and F, histamine, and glucagon.  相似文献   

4.
A low-molecular-weight human liver acid phosphatase was purified 2580-fold to homogenity by a procedure involving ammonium sulfate fractionation, acid treatment, and SP-Sephadex ion-exchange chromatography with ion-affinity elution. The purified enzyme contains a single polypeptide chain and has a molecular weight of 14,400 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid composition of this enzyme (E) is reported. A pH dependence study using p-nitrophenyl phosphate as a substrate (S) revealed the effect of substrate ionization (pKa 5.2) and the participation of a group in the ES complex having a pKa value of 7.8. The enzyme is readily inactivated by sulfhydryl reagents such as heavy metal ions. Alkylation of the enzyme with iodoacetic acid and iodoacetamide causes complete inactivation of the enzyme and this inactivation is prevented by the presence of phosphate ion. The enzyme is also inactivated by treatment with diethyl pyrocarbonate; protection against this reagent is afforded by phosphate ion. The substrate specificity of this enzyme is unusual for an acid phosphatase. Of the many alkyl and aryl phosphomonoesters tested, the only possibly physiological substrate hydrolyzed by this enzyme was flavin mononucleotide, which exhibits a V which is 3-fold larger at pH 5.0 and 6-fold larger at pH 7.0 than that for p-nitrophenyl phosphate. However, the enzyme also catalyzes the hydrolysis of acetyl phosphate at pH 5.0 with a velocity eight times larger than that reported for an acyl phosphatase from human erythrocytes.  相似文献   

5.
The stoichiometry and the reactivity of the sulfhydryl groups of a human liver acid phosphatase have been studied. The smallest (Mr = 14,400) of the three molecular-weight forms of acid phosphatase from human liver, recently purified and characterized in our laboratory, was treated with various sulfhydryl group-specific reagents: p-hydroxymercuribenzoate, p-hydroxymercuriphenylsulfonate, fluorescein mercuriacetate, methyl methanethiosulfonate, p-nitrophenoxycarbonyl methyl disulfide, and thiosulfate. A total loss of enzymatic activity was obtained in each case. By spectrophotometric titration with 5,5′-dithiobis(2-nitrobenzoate) and p-hydroxymercuriphenylsulfonate it was shown that there are six free sulfhydryls per protein molecule, consistent with the amino acid analysis of this enzyme. The same number was deduced as a result of inactivation studies carried out with p-hydroxymercuribenzoate and p-hydroxymercuriphenylsulfonate. A total loss of activity was obtained at reagent to enzyme ratios of 6:1 in both cases. Similar results were obtained upon inactivation by p-nitrophenoxycarbonyl methyl disulfide, where the enzyme was found to possess only 10% residual activity at an inhibitor-to-enzyme ratio of 6:1. With fluorescein mercuriacetate as an inactivator, total loss of activity was found at a 2.5 times molar excess of this reagent over protein. Both the stoichiometry of inactivation and fluorescence titration experiments suggest that fluorescein mercuriacetate can function as a bifunctional sulfhydryl group reagent. The activity of a totally inactivated enzyme preparation obtained following reaction with excess of p-nitrophenoxycarbonyl methyl disulfide or with methyl methanethiolsulfonate could be almost completely restored upon treatment with dithiothreitol. These data are consistent with the interpretation that in each enzyme molecule, there are six free sulfhydryl groups of almost equal reactivity, at least one of which is essential for enzymatic activity.  相似文献   

6.
In rabbit heart, results show that two isoenzymes of hexokinase (HK) are present. The enzymatic activity associated with mitochondria consists of only one isoenzyme; according to its electrophoretic mobility and its apparent Km for glucose (0.065 mm), it has been identified as type I isoenzyme. The bound HK I exhibits a lower apparent Km for ATPMg than the solubilized enzyme, whereas the apparent Km for glucose is the same for bound and solubilized HK. Detailed studies have been performed to investigate the interactions which take place between the enzyme and the mitochondrial membrane. Neutral salts efficiently solubilize the bound enzyme. Digitonin induces only a partial release of the enzyme bound to mitochondria; this result could be explained by the existence of contacts between the outer and the inner mitochondrial membranes [C. R. Hackenbrock (1968)Proc. Natl. Acad. Sci. USA61, 598–605]. Furthermore, low concentrations (0.1 mm) of glucose 6-phosphate (G6P) or ATP4? specifically solubilize hexokinase. The solubilizing effect of G6P and ATP4?, which are potent inhibitors of the enzyme, can be prevented by incubation of mitochondria with Pi or Mg2+. In addition, enzyme solubilization by G6P can be reversed by Mg2+ only when the proteolytic treatment of the heart homogenate is omitted during the course of the isolation of mitochondria. These results concerning the interaction of rabbit heart hexokinase with the outer mitochondrial membrane agree with the schematic model proposed by Wilson [(1982) Biophys. J.37, 18–19] for the brain enzyme. This model involves the existence of two kinds of interactions between HK and mitochondria; a very specific one with the hexokinase-binding protein of the outer mitochondrial membrane, which is suppressed by glucose 6-phosphate, and a less specific, cation-mediated one.  相似文献   

7.
8.
A method is described which separates the various phosphorylation sites in glycogen synthase based on reverse phase high-performance liquid chromatography (HPLC) of tryptic 32P-peptides. Using this method we studied the phosphorylation site specificities of the kinases which act on glycogen synthase. The cAMP-dependent protein kinase phosphorylated sites 1a, 1b, and 2, whereas casein kinase II phosphorylated only site 5. Two calcium, calmodulin-dependent kinases, phosphorylase kinase and liver calmodulin-dependent synthase kinase, both phosphorylated site 2, and the latter enzyme also phosphorylated site 1b. A cAMP-independent kinase (kinase 4) purified from liver also specifically phosphorylated site 2. Synthase kinase 3 catalyzed the phosphorylation of only site 3. This HPLC method was also used to establish that all of these sites were subject to phosphorylation in vivo.  相似文献   

9.
The enzymes of the purine nucleotide cycle-AMP deaminase, adenylosuccinate synthetase, and adenylosuccinate lyase-were examined as a functional unit in an in vitro system which simulates the purine nucleotide composition of sarcoplasm. Activity of each cycle enzyme in extracts of rat skeletal muscle was observed to increase as ATP/ADP, reflecting the energy state of the system, was lowered from approximately 50 to 1. The increase in AMP deaminase activity could be attributed to effects of energy state and factors such as AMP concentration, which are obligatorily coupled to energy state. The increases in synthetase and lyase activities were accounted for by increases in the concentration of IMP and adenylosuccinate, respectively. The inhibitory influence of IMP concentration on synthetase activity reported in other systems was not observed in this system; synthetase activity progressively increased as IMP concentration was raised to approximately 4 mM, and apparent saturation occurred at concentrations above 4 mM. Also, adenylosuccinate was found to be an activator of AMP deaminase. The results of this study document that the activities of the enzymes of the purine nucleotide cycle increase in parallel at low energy states, and the components of the cycle function as a coordinated unit with individual enzyme activities linked via concentrations of cycle intermediates.  相似文献   

10.
A structural analog of LTD4, 4R-hydroxy-5S-cysteinylglycyl-6Z-nonadecenoic acid (4R, 5S, 6Z-2-nor-LTD1) has been synthesized and pharmacologically characterized. It significantly antagonized the contractile action of LTD4, LTC4 and LTE4 in guinea pig airways. In addition, this compound antagonized the in vitro vasoconstrictive effects of LTD4 in the guinea pig pulmonary artery. The study of a series of structural analogs of 4R, 5S, 6Z-2-nor-LTD1 suggests that the spatial separation of the C-1 (eicosanoid) carboxyl relative to the hydroxyl is a critical determinant in LTD4 agonist/antagonist activity.  相似文献   

11.
It has been previously demonstrated that commercial bacterial fibrinolysin (EC 3.4.21.7) selectively cleaves the bond between Met-53 and Ala-54 in ovine prolactin (199 amino acids). A one-step purification procedure on DEAE-cellulose for Protease F, which is the active component of bacterial fibrinolysin, and properties of the purified enzyme are reported. The enzyme is homogeneous as judged by acrylamide gel electrophoresis. Its molecular weight, calculated from gel filtration experiments on Sephadex G-100, is around 13,800. Amino acid analyses do not reveal the presence of any half-cystines. The presence of one tryptophan residue per enzyme molecule was resolved from the fluorescence spectrum. Amino terminal analysis showed that leucine was at the amino terminal position. Protease F hydrolyzes casein and synthetic specific substrates for chymotrypsin and elastase esterases but not for trypsin esterases. It is fully inhibited by phenylmethylsulfonyl fluoride, by chicken ovoinhibitor, and by Chymotrypsin Inhibitor I from potatoes but not by the trypsin-chymotrypsin inhibitors from soybeans and chick peas or by tosyl-L-phenylalanine chloromethyl ketone. The enzyme is stable at room temperature and in the cold, it is not affected by dialysis or by freezing and thawing, but it is inactivated during freeze-drying. The circular dichroism spectra of Protease F indicate an approximate 20% alpha-helix content of the enzyme with a considerable similarity to those of subtilisin, elastase, and beta-trypsin. The relatively low molecular weight of Protease F, the absence of intrachain disulfide bridges, and the fact that it is inhibited by several, but not all, chymotrypsin inhibitors suggest that it may differ phylogenetically from the known serine proteases.  相似文献   

12.
For the measurement of the enzymatic activity of GM1-ganglioside (II3 NeuAcGgOse4Cer, galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminosyl) galactosyl-glucosylceramide) beta-galactosidase in crude enzyme samples, a microassay using nonradioisotopic GM1-ganglioside was devised. To reduce the volume of the reaction mixture and eliminate the interferences due to the fluorescent contaminants in the reaction mixture, NADH, a product after the oxidation of the released galactose with NAD and beta-galactose dehydrogenase, was fluorometrically estimated by use of high-performance liquid chromatography. By this method, as little as 10 pmol of galactose can be detected. Using rat brain homogenates as an enzyme sample, the several parameters were reexamined to define the optimal conditions for the assay. This assay method was also applied to human cultured skin fibroblast homogenates, and it was found that this method can be used for the diagnosis of GM1-gangliosidosis, instead of the usual method using the radioisotope-labeled natural substrate.  相似文献   

13.
Monodentate Co(NH3)5PPi was determined not to be a substrate for yeast inorganic pyrophosphatase while P1,P2-bidentate Co(NH3)4PPi was turned over by the enzyme at a rate of 7.5 min?1. A kinetic analysis of the substrate activities of the P1,P2-bidentate complexes, Co(en)2PPi, Cr(NH3)4PPi, Cr(H2O)(NH3)3PPi, Cr(H2O)2(NH3)2PPi, and Cr(H2O)4PPi was carried out in order to access the potential role of the metal-water ligands in productive binding. While substitution of the H2O ligands with NH3 ligands had a minimal affect on the Km for Mg2+, the binding affinity of the complexes decreased with an increasing NH3H2O ligand ratio as did the turnover number of the corresponding central complexes. The Co(en)2PPi complex was hydrolyzed at a rate approximately 0.6% of that for the Co(NH3)4PPi complex. The substrate activities of β,γ-bidentate Co(NH3)4PPPi and α,β,γ-tridentate Co(NH3)3PPP with pyrophosphatase were also tested. While both complexes were shown to bind tightly to the Mg2+-activated enzyme neither was hydrolyzed. On the other hand, in the presence of the Zn2+-activated enzyme the tridentate complex was turned over at a rate of 0.17 min?1 while the bidentate complex remained inert to hydrolysis.  相似文献   

14.
The effect of internal diffusion on the overall reaction rate in spherical particles and membranes containing immobilized enzymes has been investigated theoretically. Since they represent open systems, the MichaelisMenten kinetics is obeyed in the absence of diffusional effects at steady state even at high enzyme concentrations. When internal diffusion perturbs the reaction, the system can not be described any more by KM and Vmax? alone, but is conveniently characterized by the modulus. Assuming that only internal diffusion interferes with the enzyme reaction, the effect of the modulus on the overall rate of reaction is illustrated by the results of computer calculations. Plots of the overall reaction rate against the substrate concentration are hyperbolas at various moduli for both membranes and spherical particles and no sigmoidal curves are obtained with immobilized enzyme systems. Since the conventional plots of enzyme kinetics do not yield straight lines under such conditions, a graphical method is proposed to determine KM and Vmax? as well as the substrate diffusivity in the enzymic medium.  相似文献   

15.
The kinetic properties and substrate specificities of dipeptidyl-aminopeptidase IV (EC 3.4.14.—) detergent-solubilized and purified from the brush border membrane of rat small intestinal mucosal cells were investigated. Kinetic analysis of purified dipeptidyl-aminopeptidase IV was carried out with a variety of oligopeptides and β-napthylamide derivatives as substrates. In general, peptides with proline penultimate to the amino terminus (XPro, X= amino acid) are more favored substrates while those with alanine (XAla) are hydrolyzed at a slower rate. There is some activity toward substrates having leucine at both the penultimate position and amino terminus (LeuLeu). The activity of the purified enzyme toward GlylProβ-napthylamide derivative is maximal at pH 8.4 in Tris-HCl buffer, with an activation energy of 7.98 kcal/mol. There is no requirement for metal ion. The ability of various dipeptides to inhibit Gly-l-Pro-β-napthylamide derivative hydrolysis was used to determine the binding specificity of the enzyme for the amino-terminal amino acid. These data show that a free amino acid group is necessary for enzymatic activity and increased hydrophobicity of the amino acid at the amino terminus enhances binding.  相似文献   

16.
17.
Violaxanthin de-epoxidase. Lipid composition and substrate specificity.   总被引:11,自引:0,他引:11  
Violaxanthin de-epoxidase isolated from lettuce chloroplasts (Lactuca sativa var. Romaine) contained a single lipid component, monogalactosyldiglyceride (MG) at about 8 g per 100 g protein. The effects of MG on activation of solvent-extracted enzyme and on Km suggest that MG has two roles, namely, as a functional component of the binding site and as a substrate-solubilizing agent whose structure satisfies binding site requirements. Substrate specificity examined with various naturally occurring and semisynthetic epoxy carotenoids with known chirality showed violaxanthin de-epoxidase to be stereospecific for 3-hydroxy, 5,6-epoxy carotenoids which are in a 3S, 5R, 6S configuration. Although monoepoxides with the above configuration were active, their rates varied, apparently due to the influence of structural differences in the nonepoxide end groups. Hence while all-trans neoxanthin showed low rates, the de-epoxidation rate of antheraxanthin was 5-fold higher than violaxanthin. Neoxanthin and violeoxanthin, both naturally occurring pigments with 9-cis configurations in the acyclic polyene chain, were inactive. These effects support the view that violaxanthin de-epoxidase is a mono de-epoxidase and that the stereospecific active center is situated in a narrow well-like cavity which favors an all-trans configuration of the polyene chain. The 3-hydroxy, 5,6-epoxy group of the naturally occurring pigments, diadinoxanthin, antheraxanthin, and β-cryptoxanthin epoxide are assumed to be the 3S, 5R, 6S configuration based on their reactivity with violaxanthin de-epoxidase.  相似文献   

18.
Orotate phosphoribosyltransferase (OPRTase) and orotidylate decarboxylase (ODCase) have been found to be particulate in the kinetoplastid protozoan, Crithidia luciliae. Sucrose density centrifugation indicated that these two enzymes are associated with the glycosome, a microbody which appears to be unique to the Kinetoplastida and which contains many of the glycolytic enzymes. The particulate location of OPRTase and ODCase was considered to be favorable for channeling of orotidine-5'-monophosphate (OMP), the product of the first enzyme and substrate for the second. The degree of channeling was determined by double radioactively labeled experiments designed to determine the relative efficiency of endogenous and exogenous OMP as substrates of ODCase. The efficiency of channeling was high, with an approximate 50-fold preference for endogenous OMP. By comparison, the degree of channeling for the yeast enzymes, which are soluble and unassociated, was less than 2-fold. The OPRTase-ODCase enzyme complex was solubilized using Triton X-100 in the presence of dimethyl sulfoxide, glycerol, and phosphoribosyldiphosphate. The percentage recovery of the overall enzyme activity was approximately 20%. The degree of channeling was reduced by approximately 10-fold for the solubilized complex. The Km for OMP changed from 7.5 (+/- 1.8) to 1.6 (+/- 0.3) microM in the ODCase reaction. There was no alteration in the Km for orotate in the OPRTase reaction.  相似文献   

19.
The equivalence of the four dihydroxyacetone phosphate binding sites of aldolase was abolished by lowering the temperature. At pH 6.2 and ?13 2C, four binding sites were detected by gel filtration; two sites with a Kdiss ?0.1 μm, and a second set of sites with a Kdiss = 4 μm. The alteration of the binding was accompanied by the alteration of the catalytic activity. The low-affinity sites were incapable of catalyzing the cleavage of the (3S) CH bond of dihydroxyacetone phosphate, and form only the ketimine phosphate intermediate. The high-affinity sites were still able to cleave the (3S) CH bond of dihydroxyacetone phosphate; however, the eneamine phosphate intermediate formed was almost fully converted into the eneamine-aldehyde … phosphate intermediate, which was the prevailing species at the equilibrium. The mechanism of the half-of-the sites reactivity of aldolase at low temperature has been explained and the nonequivalence of sites in promoting catalysis has been utilized to dissect and characterize the individual partial reactions of the enzyme. In the course of these studies it has been shown that the rate of hydration-dehydration of dihydroxyacetone phosphate at ?24 °C was too slow to measure.  相似文献   

20.
Rabbit skeletal muscle glycogen synthase was phosphorylated by kinase Fa, phosphorylase kinase, and cAMP-independent synthase (casein) kinase-1 to determine the differences among these kinase-catalyzed reactions. The stoichiometry of phosphate incorporation, the extent of inactivation, and the sites of phosphorylation were compared. Synthase (casein) kinase-1 catalyzes the highest level of synthase phosphorylation (4 mol/subunit) and inactivation (reduction of the activity ratio to below 0.05). The sites, defined by characteristic tryptic peptides, phosphorylated by synthase (casein) kinase-1 are distinguishable from those by kinase Fa and phosphorylase kinase. In addition, synthase (casein) kinase-1, unlike kinase Fa, does not activate ATP X Mg2+-dependent protein phosphatase. These results demonstrate that synthase (casein) kinase-1 is a distinct glycogen synthase kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号