首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Two groups of anaerobic genes (genes induced in anaerobic cells and repressed in aerobic cells) are negatively regulated by heme, a metabolite present only in aerobic cells. Members of both groups, the hypoxic genes and the DAN/TIR/ERG genes, are jointly repressed under aerobic conditions by two factors. One is Rox1, an HMG protein, and the second, originally designated Rox7, is shown here to be Mot3, a global C2H2 zinc finger regulator. Repression of anaerobic genes results from co-induction of Mot3 and Rox1 in aerobic cells. Repressor synthesis is triggered by heme, which de-represses a mechanism controlling expression of both MOT3 and ROX1 in anaerobic cells; it includes Hap1, Tup1, Ssn6 and a fourth unidentified factor. The constitutive expression of various anaerobic genes in aerobic rox1Δ or mot3Δ cells directly implies that neither factor can repress by itself at endogenous levels and that stringent aerobic repression results from the concerted action of both. Mot3 and Rox1 are not essential components of a single complex, since each can repress independently in the absence of the other, when artificially induced at high levels. Moreover, the two repression mechanisms appear to be distinct: as shown here repression of ANB1 by Rox1 alone requires Tup1–Ssn6, whereas repression by Mot3 does not. Though artificially high levels of either factor can repress well, the absolute efficiency observed in normal cells when both are present—at much lower levels—demonstrates a novel inhibitory synergy. Evidently, expression levels for the two mutually dependent repressors are calibrated to permit a range of variation in basal aerobic expression at different promoters with differing operator site combinations.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
The MCM (mini-chromosome maintenance) genes have a well established role in the initiation of DNA replication and in the elongation of replication forks in Saccharomyces cerevisiae. In this study we demonstrate elevated expression of sub-telomeric and Ty retrotransposon-proximal genes in two mcm5 strains. This pattern of up-regulated genes resembles the genome-wide association of MCM proteins to chromatin that was reported earlier. We link the altered gene expression in mcm5 strains to a reversal of telomere position effect (TPE) and to remodeling of sub-telomeric and Ty chromatin. We also show a suppression of the Ts phenotype of a mcm5 strain by the high copy expression of the TRA1 component of the chromatin-remodeling SAGA/ADA (SPT-ADA-GCN5 acetylase/ADAptor). We propose that MCM proteins mediate the establishment of silent chromatin domains around telomeres and Ty retrotransposons.  相似文献   

15.
Glucose repression in the yeast Saccharomyces cerevisiae   总被引:50,自引:0,他引:50  
  相似文献   

16.
17.
The roles of three membrane proteins, BOR1, DUR3, and FPS1, in boron (B) transport in yeast were examined. The boron concentration in yeast cells lacking BOR1 was elevated upon exposure to 90 mM boric acid, whereas cells lacking DUR3 or FPS1 showed lower boron concentrations. Compared with control cells, cells overexpressing BOR1 or FPS1 had a lower boron concentration, and cells overexpressing DUR3 had a higher boron concentration. These results suggest that, in addition to the efflux boron transporter BOR1, DUR3 and FPS1 play important roles in regulating the cellular boron concentration. Analysis of the yeast transformants for tolerance to a high boric acid concentration revealed an apparent negative correlation between the protoplasmic boron concentration and the degree of tolerance to a high external boron concentration. Thus, BOR1, DUR3, and FPS1 appear to be involved in tolerance to boric acid and the maintenance of the protoplasmic boron concentration.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号