首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tof-like protein that has 434-specific DNA binding activity has been copurified with the 434 tof protein from lambda imm434cI dv carrier cells. The apparent molecular weight of the new 434-specific DNA binding protein is 9,000 to 9,500, a little higher than that of the 434 tof protein, as estimated by SDS gel electrophoresis. Amino acid analysis revealed the protein to be an arginine-rich component whereas the 434 tof protein is a lysine-rich component. The specific binding reaction of the new protein to lambda imm434dv DNA is distinct from that of the 434 tof protein in respect to the sigmoid shape of the binding curve and to the temperature dependency. This suggests that the specific binding to lambda imm434dv DNA observed with the new protein is due not to a trace of the 434 tof protein contaminating the new protein preparation but rather to the new protein itself. The NH2-terminal 11 residues of the new 434-specific DNA binding protein were sequenced by manual Edman degradation. This technique revealed that the new protein is not a fragment of the 434 tof, cII, or O protein or an NH2-terminal fragment of the cI repressor. The origin and the physiological roles of the new 434-specific DNA binding protein remain unknown.  相似文献   

2.
The phage 434 Cro/OR1 complex at 2.5 A resolution   总被引:9,自引:0,他引:9  
The crystal structure of phage 434 Cro protein in complex with a 20 base-pair DNA fragment has been determined to 2.5 A resolution. The DNA fragment contains the sequence of the OR1 operator site. The structure shows a bent conformation for the DNA, straighter at the center and more bent at the ends. The central base-pairs adopt conformations with significant deviations from coplanarity. The two molecules interact extensively along their common interface, both through hydrogen bonds and van der Waals interactions. The significance of these interactions for operator binding and recognition is discussed.  相似文献   

3.
Design, synthesis and DNA binding activity of a nonlinear 102 residue peptide are reported. The peptide contains four sequence-specific DNA binding domains of 434 Cro protein. These four domains were linked covalently to a symmetrical carboxyterminal crosslinker that contains four arms each ending with an aliphatic aminogroup. From CD studies we have found that in aqueous buffer in the presence of 20% trifluoroethanol the peptide residues assume alpha helical, beta-sheet and random coiled conformations with an alpha helical content of about 16% at room temperature. The alpha helicity is increased up to 40% in the presence of 40% trifluoroethanol. Upon complex formation between the peptide and DNA a change in the peptide conformation takes place which is consistent with an alpha-beta transition in the DNA binding, helix-turn-helix motif of 434 Cro repressor. Evidently residues present in helices alpha(2) and alpha(3) form a beta hairpin which is inserted in the minor DNA groove. The latter inference is supported by our observations that the peptide can displace minor groove binding antibiotic distamycin A from a complex with poly(dA).poly(dT). As revealed from DNase protection studies the peptide exhibits preferences for binding to operator and pseudooperator sites recognized by 434 Cro repressor. It binds strongly to operator sites OR1, OR2 and OR3 and exhibits a greater affinity for pseudooperator site Op1. From analysis of nucleotide sequences in the strong affinity binding sites for the peptide on DNA a conclusion is drawn that it binds to pseudosymmetrical nucleotide sequences 5'-ACAA(W)nCTGT-3', where W is an arbitrary nucleotide. n is equal to six or seven. In the strongest affinity binding site for the peptide on DNA (Op1) motif 5'-ACAA-3' is replaced by sequence 5'-ACCA-3'. A difference in binding specificity shown by the peptide and 434 Cro protein could be attributed to a flexibility of the connecting chains between DNA-binding domains in the peptide molecule as well as to a replacement of Thr - Ala in the alpha 2 helix. Removal of two residues from the N-terminal end of helix alpha 2 in each of the four DNA binding domains of 434 Cro present in the peptide leads to a loss of binding specificity, although the modified peptide binds to DNA unspecifically.  相似文献   

4.
The extent of DNA bending induced by 434 repressor, its amino terminal DNA binding domain (R1-69), and 434 Cro was studied by gel shift assay. The results show that 434 repressor and R1-69 bend DNA to the same extent. 434 Cro-induced DNA bends are similar to those seen with the 434 repressor proteins. On approximately 265 base pair fragments, the cyclic AMP receptor protein of Escherichia coli (CRP) produces larger mobility shifts than does 434 repressor. This indicates that the 434 proteins bend DNA to a much smaller extent than does CRP. The effects of central operator sequence on intrinsic and 434 protein-induced DNA bending was also examined by gel shift assay. Two 434 operators having different central sequences and affinities for 434 proteins display no static bending. The amount of gel shift induced by 434 repressor on these operators is identical, showing that the 434 repressor bends operators with different central sequences to the same extent. Hence, mutations in the central region of the operator do not influence the bent structure of the unbound or bound operator.  相似文献   

5.
Hays LB  Chen YS  Hu JC 《BioTechniques》2000,29(2):288-90, 292, 294 passim
The yeast two-hybrid system has been used to characterize many protein-protein interactions. A two-hybrid system for E. coli was constructed in which one hybrid protein bound to a specific DNA site recruits another to an adjacent DNA binding site. The first hybrid comprises a test protein, the bait, fused to a chimeric protein containing the 434 repressor DNA binding domain. In the second hybrid, a second test protein, the prey, is fused downstream of a chimeric protein with the DNA binding specificity of the lambda repressor. Reporters were designed to express cat and lacZ under the control of a low-affinity lambda operator. At low expression levels, lambda repressor hybrids weakly repress the reporter genes. A high-affinity operator recognized by 434 repressor was placed nearby, in a position that does not yield repression by 434 repressor alone. If the test proteins interact, the 434 hybrid bound to the 434 operator stabilizes the binding of the lambda repressor hybrid to the lambda operator, causing increased repression of the reporter genes. Reconstruction experiments with the fos and jun leucine zippers detected protein-protein interactions between either homodimeric or heterodimeric leucine zippers.  相似文献   

6.
Redesign of the bacteriophage 434 Cro repressor was accomplished by using an in vivo genetic screening system to identify new variants that specifically bound previously unrecognized DNA sequences. Site-directed, combinatorial mutagenesis of the 434 Cro helix-turn-helix (HTH) motif generated libraries of new variants which were screened for binding to new target sequences. Multiple mutations of 434 Cro that functionally converted wild-type (wt) 434 Cro DNA binding-sequence specificity to that of a lambda bacteriophage-specific repressor were identified. The libraries contained variations within the HTH sequence at only three positions. In vivo and in vitro analysis of several of the identified 434 Cro variants showed that the relatively few changes in the recognition helix of the HTH motif of 434 Cro resulted in specific and tight binding of the target DNA sequences. For the best 434 Cro variant identified, an apparent K(d) for lambda O(R)3 of 1 nM was observed. In competition experiments, this Cro variant was observed to be highly selective. We conclude that functional 434 Cro repressor variants with new DNA binding specificities can be generated from wt 434 Cro by mutating just the recognition helix. Important characteristics of the screening system responsible for the successful identifications are discussed. Application of the techniques presented here may allow the identification of DNA binding protein variants that functionally affect DNA regulatory sequences important in disease and industrial and biotechnological processes.  相似文献   

7.
Although bacteriophage 434 repressor binds to its specific DNA sites only as a dimer, formation of the dimers in solution occurs at concentrations three orders of magnitude higher than those needed to bind the 434 operator DNA. Our results suggest that both specific and non-specific DNA induce conformational changes in repressor that lead to formation of repressor dimers. The repressor conformational changes induced by DNA occur at concentrations much lower than those needed for binding of repressor, suggesting that the alternative conformations of repressor persist even if the protein is not in direct contact with DNA. Hence, DNA acts in a "catalytic" fashion to induce a steady-state amount of an alternative repressor conformation that has an enhanced affinity for its specific binding site. These findings suggest that the repressor conformer induced by non-specific DNA is the form of the repressor that is optimized for searching for DNA binding sites along non-specific DNA. Upon finding a binding site, the repressor protein undergoes an additional conformational change that allows it to "lock-on" to its specific site.  相似文献   

8.
A comparative model building process has been utilized to predict the three-dimensional structure of the bacteriophage 434 Cro protein. Amino acid sequence similarities between the 434 Cro protein and other bacteriophage repressor and Cro proteins have been used, in conjunction with secondary structure prediction and the known structures of other base sequence specific DNA binding proteins, to derive the model. From this model the interactions between the 434 Cro protein and its operator DNA have been deduced. These proposed interactions are consistent with the known properties of the bacteriophage 434 Cro protein.  相似文献   

9.
Abstract

A comparative model building process has been utilized to predict (he three-dimensional structure of the bacteriophage 434 Cro protein, Amino acid sequence similarities between the 434 Cro protein and other bacteriophage repressor and Cro proteins have been used, in conjunction with secondary structure prediction and the known structures of other base sequence specific DNA binding proteins, to derive the model. From this model the interactions between the 434 Cro protein and its operator DNA have been deduced. These proposed interactions are consistent with the known properties of the bacteriophage 434 Cro protein.  相似文献   

10.
The nucleotide sequence of a 869 bp segment of phage 434 DNA including the regulatory genes cro and cII is presented and compared with the corresponding part of the phage lambda DNA sequence. The 434 cro protein as deduced from the DNA sequence is a highly basic protein of 71 amino acid residues with a calculated molecular weight of 8089. While the cro gene sequences of phage 434 and lambda DNA are very different, the nuleotide sequences to the right of the lambda imm434 boundary show differences only at 11 out of 512 positions. Nucleotide substitutions in the cII gene occur with one exception in the third positions of the respective codons and only one out of several DNA regulatory signals located in this region of the phage genomes is affected by these nucleotide substitutions.  相似文献   

11.
A plaque-forming lambdaimm434 bacteriophage carrying the entire genome of colicinogenic factor E1 has been isolated and characterized. This phage, lambdaimm434ColE1, can lysogenize as a stable plasmid within a recombination-deficient Escherichia coli cell that lacks the normal attachment site for lambda phage. Furthermore, it has been found that lambdaimm434ColE1 phage carrying amber mutations in the O and P genes of the lambda genome, i.e., lambdaimm434OamPamColE1, behaves as a plaque-forming phage, and this finding suggests that the ColE1 factor DNA permits replication of the DNA of the plaque-forming phage.  相似文献   

12.
Recognition of DNA sequences by the repressor of bacteriophage 434   总被引:2,自引:0,他引:2  
The structure of a complex between the DNA-binding domain of phage 434 repressor and a 14 base-pair synthetic DNA operator reveals the molecular interactions important for sequence-specific recognition. A set of contacts with DNA backbone, notably involving hydrogen bonds between peptide-NH groups and DNA phosphates, position the repressor and fix the DNA configuration. Direct interactions between amino acid side chains and DNA bases involve nonpolar van der Waals contacts as well as hydrogen bonds. The structures of the repressor domain and of the 434 cro protein are extremely similar. There appear to be no major conformational changes in the proteins when they bind to DNA.  相似文献   

13.
Digestion of phage lambda imm434 DNA with restriction endonuclease EcoRI yields 7 fragments. The shortest among them (1287 bp) contains the right part of the phage 434 immunity region and the phage DNA portion proximal to it. The complete primary structure of this fragment has been determined using the chemical method of DNA sequencing. Hypothetical amino-acid sequences of proteins coded by the cro gene of phage 434 and the cII gene of phage lambda, as well as NH2-terminal amino-acid sequences of the cI protein of phage 434 and the O protein of phage lambda, have been deduced solely on the basis of the DNA sequence. The fragment studied contains also the pR and probably prm promoters and the oR operator of phage 434. The sequence coding for them differs from the respective DNA sequence of phage lambda.  相似文献   

14.
J Chen  S Pongor    A Simoncsits 《Nucleic acids research》1997,25(11):2047-2054
Single-chain derivatives of the phage 434 repressor, termed single-chain repressors, contain covalently dimerized DNA-binding domains (DBD) which are connected with a peptide linker in a head-to-tail arrangement. The prototype RR69 contains two wild-type DBDs, while RR*69 contains a wild-type and an engineered DBD. In this latter domain, the DNA- contacting amino acids of thealpha3 helix of the 434 repressor are replaced by the corresponding residues of the related P22 repressor. We have used binding site selection, targeted mutagenesis and binding affinity studies to define the optimum DNA recognition sequence for these single-chain proteins. It is shown that RR69 recognizes DNA sequences containing the consensus boxes of the 434 operators in a palindromic arrangement, and that RR*69 optimally binds to non-palindromic sequences containing a 434 operator box and a TTAA box of which the latter is present in most P22 operators. The spacing of these boxes, as in the 434 operators, is 6 bp. The DNA-binding of both single-chain repressors, similar to that of the 434 repressor, is influenced indirectly by the sequence of the non-contacted, spacer region. Thus, high affinity binding is dependent on both direct and indirect recognition. Nonetheless, the single-chain framework can accommodate certain substitutions to obtain altered DNA-binding specificity and RR*69 represents an example for the combination of altered direct and unchanged indirect readout mechanisms.  相似文献   

15.
 Short oligopeptides (14 residues) derived from the DNA recognition helix of the phage 434 repressor (434R) have been tethered onto the metallointercalating [Rh(phi)2(phen′)]3+, and the DNA recognition characteristics of the resultant metal-peptide complexes have been examined. DNA sequence selectivities for the family of metal-peptide complexes, determined in photoactivated DNA cleavage experiments, reproduce features of operator recognition by the native 434R. Binding to the DNA duplex depends both on the appended peptide and upon the metallointercalating unit, as determined through variations in the peptide sequence and in the diastereomeric configuration of the metal-peptide. The complexes preferentially target 5′-ACAA-3′ operator sites and single-base variants, bind at 50 nM concentrations, and, as determined by chemical footprinting, protect 7–10 bp of DNA around the target sites. Comparative cleavage studies on synthetic oligonucleotides containing variations in operator sequence, furthermore, reveal a hierarchy in sequence preference which resembles the native protein, but highest affinity for the metal-peptides, unlike 434R, is found for 5′-ACGA-3′. These studies illustrate a new route to the rational design of small, artificial repressors through the construction of metal-peptide complexes. Received: 18 June 1997 / Accepted: 11 September 1997  相似文献   

16.
Two DNA binding proteins, Cro and the amino-terminal domain of the repressor of bacteriophage 434 (434 Cro and 434 repressor) that regulate gene expression and contain a helix-turn-helix (HTH) motif responsible for their site-specific DNA recognition adopt very similar three-dimensional structures when compared to each other. To reveal structural differences between these two similar proteins, their dynamic structures, as examined by normal mode analysis, are compared in this paper. Two kinds of structural data, one for the monomer and the other for a complex with DNA, for each protein, are used in the analyses. From a comparison between the monomers it is found that the interactions of Ala-24 in 434 Cro or Val-24 in 434 repressor, both located in the HTH motif, with residues 44, 47, 48, and 51 located in the domain facing the motif, and the interactions between residues 17, 18, 28, and 32, located in the HTH motif, cause significant differences in the correlative motions of these residues. From the comparison between the monomer and the complex with DNA for each protein, it was found that the first helix in the HTH motif is distorted in the complex form. While the residues in the HTH motif in 434 Cro have relatively larger positive correlation coefficients of motions with other residues within the HTH motif, such correlations are not large in the HTH motif of 434 repressor. It is suggestive to their specificity because the 434 repressor is less specific than 434 Cro. Although a structural comparison of proteins has been performed mainly from a static or geometrical point of view, this study demonstrates that the comparison from a dynamic point of view, using the normal mode analysis, is useful and convenient to explore a difference that is difficult to find only from a geometrical point of view, especially for proteins very similar in structure. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Recognition of DNA structure by 434 repressor.   总被引:2,自引:1,他引:1       下载免费PDF全文
In complexes of bacteriophage 434 binding sites with 434 repressor the central 4 bp of the 14 bp site are not contacted by the protein, although changes in these bases alter binding site affinity for the repressor. Our previous data suggested that the ability of the non-contacted central bases to be overtwisted in repressor-DNA complexes governs affinity of the binding site for 434 repressor. This idea was tested by examining the affinity of two central sequence variant 434 binding sites for 434 repressor as a function of binding site average twist. The 434 repressor preferred the relatively overwound binding site to the two more underwound forms. The greatest affinity enhancement resulting from increasing twist was observed with a binding site that is relatively underwound and more resistant to twisting deformation. Consistent with the idea that 434 repressor overtwists its binding site upon DNA binding, we show that 434 repressor is capable of binding to sites bearing a single base insertion in their center (a 15mer), but binds poorly to binding sites bearing central base deletions (12mer and 13mer). The N-terminal dimer interface plays a large role in determining 434 repressor central base preferences. Mutations in this interface eliminate central base discrimination and/or site size preferences. These mutations also lead to changes in the size of the repressor footprint on the various sized DNA sites that are consistent with their binding characteristics.  相似文献   

18.
19.
The repressor protein of bacteriophage 434 binds to DNA as a dimer of identical subunits. Its strong dimerization is mediated by the carboxyl-terminal domain. Cooperative interactions between the C-terminal domains of two repressor dimers bound at adjacent sites can stabilize protein-DNA complexes formed with low-affinity binding sites. We have constructed a plasmid, pCT1, which directs the overproduction of the carboxyl-terminal domain of 434 repressor. The protein encoded by this plasmid is called CT-1. Cells transformed with pCT1 are unable to be lysogenized by wild-type 434 phage, whereas control cells are lysogenized at an efficiency of 1 to 5%. The CT-1-mediated interference with lysogen formation presumably results from formation of heteromeric complexes between the phage-encoded repressor and the plasmid-encoded carboxyl-terminal domain fragment. These heteromers are unable to bind DNA and thereby inhibit the repressor's activity in promoting lysogen formation. Two lines of evidence support this conclusion. First, DNase I footprinting experiments show that at a 2:1 ratio of CT-1 to intact 434 repressor, purified CT-1 protein prevents the formation of complexes between 434 repressor and its OR1 binding site. Second, cross-linking experiments reveal that only a specific heterodimeric complex forms between CT-1 and intact 434 repressor. This latter observation indicates that CT-1 interferes with 434 repressor-operator complex formation by preventing dimerization and not by altering the conformation of the DNA-bound repressor dimer. Our other evidence is also consistent with this suggestion. We have used deletion analysis in an attempt to define the region which mediates the 434 repressor-CT-1 interaction. CT-1 proteins which have more than the last 14 amino acids removed are unable to interfere with 434 repressor action in vivo.  相似文献   

20.
DNA sequence of the att region of coliphage 434   总被引:1,自引:0,他引:1  
D Mascarenhas  R Kelley  A Campbell 《Gene》1981,15(2-3):151-156
Phages lambda and 434 are related phages that insert at the same site on the Escherichia coli chromosome. A 5.9-kb SalI-BamHI fragment derived from phage 434 was shown to hybridize to a 0.5-kb probe carrying attP-lambda. A 0.8-kb Bam HI-TaqI fragment subcloned into pBR327 was used for sequencing. The sequence of the 500 bp around the insertion site is given here, Comparison of the lambda and 434 sequence shows that the following regions are conserved: the coding sequence for the integrase protein (only 162 bp have been sequenced corresponding to the carboxy terminus), the 15-bp common core at the insertion site, and the three integrase-binding sites flanking the insertion site. The lambda and 434 sequences diverge radically to the left of base-197, suggesting that DNA to the left of that point plays no specific role in insertion or its regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号