首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 The development of the Drosophila wing involves progressive patterning events. In the second larval instar, cells of the wing disc are allotted wing or notum fates by a wingless-mediated process and dorsal or ventral fates by the action of apterous and wingless. Notch-mediated signalling is required for the expression of the genes vestigial and scalloped in the presumptive wing blade. Later, wingless, Notch and cut are involved in cell fate specification along the wing margin. The function of scalloped in this process is not well understood and is the focus of this study. We show that patterning downstream of Notch and wingless pathways is altered in scalloped mutants. Reduction in scalloped expression results in a loss of expression of wing blade- and margin-specific markers. Misexpression of scalloped in the presumptive wing causes misexpression of scalloped, vestigial and wingless reporter genes. However, high levels of scalloped expression have a negative influence on wingless, vestigial and its own expression. Our results demonstrate that scalloped functions in a level-dependent manner in the presumptive wing blade in a loop that involves vestigial and itself. We suggest that wing development requires the regulated expression of scalloped together with vestigial–the ”wing formation” effects of Vestigial in other imaginal discs are probably due to its interaction with the scalloped gene product normally expressed in these discs. Received: 6 May 1998 / Accepted: 22 July 1998  相似文献   

2.
3.
 Adult muscle development in Drosophila is intimately associated with the development of the nervous system and epidermis. During metamorphosis, myoblasts from the wing imaginal disc reach target sites on the developing pupal epidermis and begin the formation of multinucleate myofibres of the dorsal thorax. The paths taken by pupal myoblasts could be specified by the nervous system and/or the epidermis. Using genetically marked donor pupal wing and leg discs transplanted onto pupal hosts, we have generated animals that have ectopic wings or legs and have examined the formation of adult muscle types. We show that thoracic myoblasts migrate over both host and donor epidermis when the transplant site on the host is thoracic. However, when the transplant site is on the abdomen, thoracic myoblasts do not migrate over abdominal epidermis. Our results show that the epidermis plays an important role in determining the migration pattern of myoblasts. Since muscles are multinucleate cells that form by the fusion of myoblasts, one way in which their molecular characteristics could be achieved is by some myoblasts acting as ”founders”. These myoblasts could influence the pattern of gene expression of those nuclei that fuse with them. We have examined, again using disc transplant experiments, if myoblasts on discs have the capacity to express fibre-specific genes as distinct from this property being conferred by other extra-discs myoblasts. Our results demonstrate that disc-associated myoblasts can indeed fuse with each other to express fibre-specific genes. We synthesize the results presented here with those from earlier experiments to suggest a mechanism for muscle patterning in the adult thorax. Received: 8 January 1995 / Accepted in revised form: 22 January 1996  相似文献   

4.
5.
 We have studied the role of the wingless gene in embryonic brain development of Drosophila. wingless is expressed in a large domain in the anlage of the protocerebrum and also transiently in smaller domains in the anlagen of the deutocerebrum and tritocerebrum. Elimination of the wingless gene in null mutants has dramatic effects on the developing protocerebrum; although initially generated, approximately one half of the protocerebrum is deleted in wingless null mutants by apoptotic cell death at late embryonic stages. Using temperature sensitive mutants, a rescue of the mutant phenotype can be achieved by stage-specific expression of functional wingless protein during embryonic stages 9–10. This time period correlates with that of neuroblast specification but preceeds the generation and subsequent loss of protocerebral neurons. Ectopic wingless over-expression in gain-of-function mutants results in dramatically oversized CNS. We conclude that wingless is required for the development of the anterior protocerebral brain region in Drosophila. We propose that an important role of wingless in this part of the developing brain is the determination of neural cell fate. Received: 7 October 1997 / Accepted: 30 December 1997  相似文献   

6.
Almost every cell in the Drosophila pupal wing forms a single, distally pointing cuticular hair. The function of the frizzled (fz) gene is essential for the elaboration of the normal wing hair pattern. In the absence of fz function hairs develop, but they display an abnormal polarity. We have examined the developmental expression of the fi gene at the RNA level via in situ hybridization and at the protein level via Western blotting. We have found that fz is expressed in all regions of the epidermis before, during, and after the fz cold sensitive period. We have also found that fz function is not required for normal fi expression. We have further found that mutations in several other tissue polarity genes do not noticeably alter the expression or the modification state of the Fz protein. © 1994 Wiley-Liss, Inc.  相似文献   

7.
 The genital disc of Drosophila, which gives rise to the genitalia and analia of adult flies, is formed by cells from different embryonic segments. To study the organization of this disc, the expressions of segment polarity and homeotic genes were investigated. The organization of the embryonic genital primordium and the requirement of the engrailed and invected genes in the adult terminalia were also analysed. The results show that the three primordia, the female and male genitalia plus the analia, are composed of an anterior and a posterior compartment. In some aspects, each of the three primordia resemble other discs: the expression of genes such as wingless and decapentaplegic in each anterior compartment is similar to that seen in leg discs, and the absence of engrailed and invected cause duplications of anterior regions, as occurs in wing discs. The absence of lineage restrictions in some regions of the terminalia and the expression of segment polarity genes in the embryonic genital disc suggest that this model of compartmental organization evolves, at least in part, as the disc grows. The expression of homeotic genes suggests a parasegmental organization of the genital disc, although these genes may also change their expression patterns during larval development. Received: 4 February 1997 / Accepted: 22 May 1997  相似文献   

8.
Absolute constraints are limitations on genetic variation that preclude evolutionary change in some aspect of the phenotype. Absolute constraints may reflect complete absence of variation, lack of genetic variation that extends the range of phenotypes beyond some limit, or lack of additive genetic variation. This last type of absolute constraint is bidirectional, because the mean cannot evolve to be larger or smaller. Most traits do possess genetic variation, so bidirectional absolute constraints are most likely to be detected in a multivariate context, where they would reflect combinations of traits, or dimensions in phenotype space that cannot evolve. A bidirectional absolute constraint will cause the additive genetic covariance matrix (G) to have a rank less than the number of traits studied. In this study, we estimate the rank of the G-matrix for 20 aspects of wing shape in Drosophila melanogaster. Our best estimates of matrix rank are 20 in both sexes. Lower 95% confidence intervals of rank are 17 for females and 18 for males. We therefore find little evidence of bidirectional absolute constraints. We discuss the importance of this result for resolving the relative roles of selection and drift processes versus constraints in the evolution of wing shape in Drosophila.  相似文献   

9.
The scalloped and vestigial genes are both required for the formation of the Drosophila wing, and recent studies have indicated that they can function as a heterodimeric complex to regulate the expression of downstream target genes. We have analyzed the consequences of complete loss of scalloped function, ectopic expression of scalloped, and ectopic expression of vestigial on the development of the Drosophila wing imaginal disc. Clones of cells mutant for a strong allele of scalloped fail to proliferate within the wing pouch, but grow normally in the wing hinge and notum. Cells overexpressing scalloped fail to proliferate in both notal and wing-blade regions of the disc, and this overexpression induces apoptotic cell death. Clones of cells overexpressing vestigial grow smaller or larger than control clones, depending upon their distance from the dorsal-ventral compartment boundary. These studies highlight the importance of correct scalloped and vestigial expression levels to normal wing development. Our studies of vestigial-overexpressing clones also reveal two further aspects of wing development. First, in the hinge region vestigial exerts both a local inhibition and a long-range induction of wingless expression. These and other observations imply that vestigial-expressing cells in the wing blade organize the development of surrounding wing-hinge cells. Second, clones of cells overexpressing vestigial exhibit altered cell affinities. Our analysis of these clones, together with studies of scalloped mutant clones, implies that scalloped- and vestigial-dependent cell adhesion contributes to separation of the wing blade from the wing hinge and to a gradient of cell affinities along the dorsal-ventral axis of the wing.  相似文献   

10.
The expression of two temperature-sensitive reporter genes, hsp70 and an hsp70-LacZ fusion, in free-ranging adult Drosophila melanogaster indicates that natural thermal stress experienced by such small and mobile insects may be either infrequent or not severe. Levels of the heat-shock protein Hsp70, the major inducible Hsp of Drosophila, were similar in most wild Droso- phila captured after warm days to levels previously reported for unstressed flies in the laboratory. In a transgenic strain transformed with an hsp70-LacZ fusion (i.e., the structural gene encoding bacterial β-galactosidase under control of a heat shock promoter), exposure to temperatures ≥32°C in the laboratory typically resulted in β-galactosidase activities exceeding 140 mOD450 h–1μg–1 soluble protein. Flies caged in sun frequently had β-galactosidase activities in excess of this level, whereas flies caged in shade and flies released and recaptured on cool days did not. Most flies (>80%) released on warm, sunny days had low β-galactosidase activities upon recapture. Although the balance of recaptured flies had elevated β-galactosidase activities on these days, their β-galactosidase activities were <50% of levels for flies caged in direct sunlight or exposed to laboratory heat shock. These data suggest that even on warm days most flies may avoid thermal stress, presumably through microhabitat selection, but that a minority of adult D. melanogaster undergo mild thermal stress in nature. Both temperature-sensitive reporter genes, however, are limited in their ability to infer thermal stress and demonstrate its absence. Received: 14 July 1999 / Accepted: 21 December 1999  相似文献   

11.
12.
13.
 Using electron microscopy we demonstrate that degenerating neurons and cellular debris resulting from neuronal reorganization are phagocytosed by glial cells in the brain and nerve cord of the fruitfly Drosophila melanogaster during the first few hours following pupariation. At this stage several classes of glial cells appear to be engaged in intense phagocytosis. In the cell body rind, neuronal cell bodies are engulfed and phagocytosed by the same glial cells that enwrap healthy neurons in this region. In the neuropil, cellular debris in tracts and synaptic centres resulting from metamorphic re-differentiation of larval neurons is phagocytosed by neuropil-associated glial cells. Phagocytic glial cells are hypertrophied, produce large amounts of lysosome-like bodies and contain a large number of mitochondria, condensed chromatin bodies, membranes and other remains from neuronal degeneration in phagosomes. Received: 23 January 1996 / Accepted in revised form: 21 May 1996  相似文献   

14.
In this paper we use an adjusted ellipse to the contour of the wings of Drosophila as an experimental model to study phenotypic plasticity. The geometric properties of the ellipse describe the wing morphology. Size is the geometric mean of its two radii; shape is the ratio between them; and, the positions of the apexes of the longitudinal veins are determined by their angular distances to the major axis of the ellipse. Flies of an inbred laboratory strain of Drosophila melanogaster raised at two temperatures (16.5°C and 25°C) and two densities (10 and 100 larvae per vial) were used. One wing of at least 40 animals of each sex and environmental condition were analyzed (total = 380), a measurement of thorax length was also taken. Wing size variation could be approximately divided into two components: one related to shape variation and the other shape independent. The latter was influenced primarily by temperature, while the former was related to sex and density. A general pattern could be identified for the shape dependent variation: when wings become larger they become longer and the second, fourth and fifth longitudinal veins get closer to the tip of the wing. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
 During embryogenesis in insects, the axonscaffold of the brain is built around the embryonic foregut which separates the anlagen of the brain hemispheres. Here, we investigate this process in Drosophila and show that the major longitudinal and horizontal tracts of the embryonic brain form superficially near the interface between the foregut and embryonic brain hemispheres. We identify three types of cellular structures which might be involved in tract formation. These are rows of glial cells at the medial brain margin, cellular bridges composed of neuronal somata and the epithelial surface of the foregut itself. The close proximity to the outgrowing axons suggests that the structures at the brain-foregut interface may play a role in the morphogenesis of embryonic brain tracts in Drosophila. Received: 11 November 1996 / Accepted: 3 January 1997  相似文献   

16.
 In Drosophila a remarkable feature of oogenesis is the regression of the nurse cells after dumping their cytoplasmic contents into the oocyte. We have studied the nature of this process at the late stages of egg chamber development. In egg chambers DAPI staining shows highly condensed chromatin from stage 12 and TUNEL labelling shows DNA fragmentation up to stage 14. Gel electrophoresis of the end-labelled DNA, extracted from isolated egg chambers at the same stages of development, shows a ladder typical of apoptotic nuclei. This provides evidence that, during Drosophila oogenesis, the nurse cells undergo apoptosis. Apoptotic nuclei have also been detected in dumping-defective egg chambers, indicating that the cytoplasmic depletion of nurse cells is concurrent with but apparently not the cause of the process. Received: 12 December 1997 / Accepted: 6 January 1998  相似文献   

17.
Summary Significant changes of genotypic structure in 20 lines selected for wing length are detected by analysis of the allelic frequencies of several enzyme loci (XDH, LAP-D, EST-6, 1-APH, ADH, -GPDH). These changes are not haphazard but a consequence of the effects of selection on the genetic structure of the population, since replicate lines always behave in a parallel way. The changes are larger in the lines selected for short wings, in which the genetic variability decreases considerably. This decrease is the result of selection for homozygosity, detected at the allozyme loci, but most probably reflects homozygosity of more or less extended chromosomal segments. Selection for wing length, especially for short wings, favoured recombinants of the initial founder chromosomes. Only in the 1-APH and the EST-6 loci, separated by 11.7 centimorgans on the genetic map, do the alleles linked in the founder lines change in parallel in the control and long wing lines. The correlated response in the allozyme allele frequencies cannot be accounted for by a direct influence of the allozymes on the variability in wing length. The changes in the EST-6, 1-APH and perhaps in the LAP-D, can be explained by a direct effect of natural selection on the allozyme loci, probably in interaction with the effect of selection for wing length on linked loci. This last effect seems to be the main factor contributing to the change detected in the XDH locus.  相似文献   

18.
We describe the cloning and characterization of a new gene family of adenylyl cyclase related genes in Drosophila. The five adenylyl cyclase-like genes that define this family are clearly distinct from previously known adenylyl cyclases. One member forms a unique locus on chromosome 3 whereas the other four members form a tightly clustered, tandemly repeated array on chromosome 2. The genes on chromosome 2 are transcribed in the male germline in a doublesex dependent manner and are expressed in postmitotic, meiotic, and early differentiating sperm. These genes therefore provide the first evidence for a role for the cAMP signaling pathway in Drosophila spermatogenesis. Expression from this locus is under the control of the always early, cannonball, meiosis arrest, and spermatocyte arrest genes that are required for the G2/M transition of meiosis I during spermatogenesis, implying a mechanism for the coordination of differentiation and proliferation. Evidence is also provided for positive selection at the locus on chromosome 2 which suggests this gene family is actively evolving and may play a novel role in spermatogenesis. Received: 26 September 1999 / Accepted: 27 October 1999  相似文献   

19.
 By using high resolution two-dimensional (2D) gel electrophoresis coupled with computer-analysis we have established a quantitative Drosophila wing imaginal disc protein database of third instar larvae as a reference to be used for comparative purposes in genetic studies. A general catalogue integrated by 1,184 35S-methionine-labelled polypeptides from wing imaginal disc has been obtained. The level of expression for all the proteins has been quantitatively determined. The quantitative reproducibility of the analysis system has been estimated and all the controls studied as database reference to interpret the results of experiments with mutant discs. One example, corresponding to iro 1 mutation, has been used to show how some of the changes observed with mutant discs clearly extend out of the limits defined by the controls. This enables us to generate comparative parameters for the study of proliferation, morphogenesis and differentiation of Drosophila and opens the possibility of rapidly defining the nature and quantity of changes in patterns of gene expression in developmental genetic studies. Received: 21 June 1996 / Accepted: 27 September 1996  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号