首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sex chromosomes are advantageous to mammals, allowing them to adopt a genetic rather than environmental sex determination system. However, sex chromosome evolution also carries a burden, because it results in an imbalance in gene dosage between females (XX) and males (XY). This imbalance is resolved by X dosage compensation, which comprises both X chromosome inactivation and X chromosome upregulation. X dosage compensation has been well characterized in the soma, but not in the germ line. Germ cells face a special challenge, because genome wide reprogramming erases epigenetic marks responsible for maintaining the X dosage compensated state. Here we explain how evolution has influenced the gene content and germ line specialization of the mammalian sex chromosomes. We discuss new research uncovering unusual X dosage compensation states in germ cells, which we postulate influence sexual dimorphisms in germ line development and cause infertility in individuals with sex chromosome aneuploidy.  相似文献   

2.
Compared with autosomes, the X chromosome shows different patterns of evolution as a result of its hemizygosity in males. Additionally, inactivation of the X during spermatogenesis can make the X chromosome an unfavorable location for male-specific genes. These factors can help to explain why in many species gene content of the X chromosome differs from that of autosomes. Indeed, the X chromosome in mouse is enriched for male-specific genes while they are depleted on the X in Drosophila but show neither of these trends in mosquito. Here, we will discuss recent findings on the ancestral and neo-X chromosomes in Drosophila that support sexual antagonism as a force shaping gene content evolution of sex chromosomes and suggest that selection could be driving male-biased genes off the X.  相似文献   

3.
4.
5.
Since the two eutherian sex chromosomes diverged from an ancestral autosomal pair, the X has remained relatively gene-rich, while the Y has lost most of its genes through the accumulation of deleterious mutations in nonrecombining regions. Presently, it is unclear what is distinctive about genes that remain on the Y chromosome, when the sex chromosomes acquired their unique evolutionary rates, and whether X-Y gene divergence paralleled that of paralogs located on autosomes. To tackle these questions, here we juxtaposed the evolution of X and Y homologous genes (gametologs) in eutherian mammals with their autosomal orthologs in marsupial and monotreme mammals. We discovered that genes on the X and Y acquired distinct evolutionary rates immediately following the suppression of recombination between the two sex chromosomes. The Y-linked genes evolved at higher rates, while the X-linked genes maintained the lower evolutionary rates of the ancestral autosomal genes. These distinct rates have been maintained throughout the evolution of X and Y. Specifically, in humans, most X gametologs and, curiously, also most Y gametologs evolved under stronger purifying selection than similarly aged autosomal paralogs. Finally, after evaluating the current experimental data from the literature, we concluded that unique mRNA/protein expression patterns and functions acquired by Y (versus X) gametologs likely contributed to their retention. Our results also suggest that either the boundary between sex chromosome strata 3 and 4 should be shifted or that stratum 3 should be divided into two strata.  相似文献   

6.
Horabin JI 《Fly》2012,6(1):26-29
Equalizing sex chromosome expression between the sexes when they have largely differing gene content appears to be necessary, and across species, is accomplished in a variety of ways. Even in birds, where the process is less than complete, a mechanism to reduce the difference in gene dose between the sexes exists. In early development, while the dosage difference is unregulated and still in flux, it is frequently exploited by sex determination mechanisms. The Drosophila female sex determination process is one clear example, determining the sexes based on X chromosome dose. Recent data show that in Drosophila, the female sex not only reads this gene balance difference, but at the same time usurps the moment. Taking advantage of the transient default state of male dosage compensation, the sex determination master-switch Sex-lethal which resides on the X, has its expression levels enhanced before it works to correct the gene imbalance. Intriguingly, key developmental genes which could create developmental havoc if their levels were unbalanced show more exquisite regulation, suggesting nature distinguishes them and ensures their expression is kept in the desirable range.  相似文献   

7.
8.
Sex chromosomes are derived from ordinary autosomes. The X chromosome is thought to maintain most of its ancestral genes over evolutionary time, whereas its Y counterpart degenerates, owing to its lack of recombination. Genomic analyses of young sex chromosome pairs support this view and have shed light on the evolutionary processes underlying loss of gene function on the Y. Studies of ancestral sex chromosomes, however, have also revealed that the process of sex chromosome evolution can be more dynamic than traditionally appreciated. In particular, ancient Y-chromosomes are characterized not only by a loss of genes relative to the X but also by recurrent gains of individual genes or genomic regions, and they often accumulate genes beneficial to males. Furthermore, X chromosomes are not passive players in this evolutionary process but respond both to their sex-biased transmission and to Y-chromosome degeneration, through feminization and the evolution of dosage compensation.  相似文献   

9.
We describe here the results of a search of Mendelian inheritance in man, GENDIAG and other sources which suggest that, in comparison with autosomes 1, 2, 3, 4 and 11, the X chromosome may contain a significantly higher number of sex- and reproduction-related (SRR) genes. A similar comparison between X-linked entries and a subset of randomly chosen entries from the remaining autosomes also indicates an excess of genes on the X chromosome with one or more mutations affecting sex determination (e.g. DAX1), sexual differentiation (e.g. androgen receptor) or reproduction (e.g. POF1). A possible reason for disproportionate occurrence of such genes on the X chromosome could be that, during evolution, the 'choice' of a particular pair of homomorphic chromosomes for specialization as sex chromosomes may be related to the number of such genes initially present in it or, since sex determination and sexual dimorphism are often gene dose-dependent processes, the number of such genes necessary to be regulated in a dose-dependent manner. Further analysis of these data shows that XAR, the region which has been added on to the short arm of the X chromosome subsequent to eutherian-marsupial divergence, has nearly as high a proportion of SRR genes as XCR, the conserved region of the X chromosome. These observations are consistent with current hypotheses on the evolution of sexually antagonistic traits on sex chromosomes and suggest that both XCR and XAR may have accumulated SRR traits relatively rapidly because of X linkage.  相似文献   

10.
Marsupial sex chromosomes are smaller than their eutherian counterparts and are thought to reflect an ancestral mammalian X and Y. The gene content of this original X is represented largely by the long arm of the human X chromosome. Genes on the short arm of the human X are autosomal in marsupials and monotremes, and represent a recent addition to the eutherian X and Y. The marsupial X and Y apparently lack a pseudoautosomal region and show only end-to-end pairing at meiosis. However, the sex chromosomes of macropodid marsupials (kangaroos and wallabies) are larger than the sex chromosomes of other groups, and a nucleolus organizer is present on the X and occasionally the Y. Chromosome painting using DNA from sorted and microdissected wallaby X and Y chromosomes reveals homologous sequences on the tammar X and Y chromosomes, concentrated on the long arm of the Y chromosome and short arm of the X. Ribosomal DNA sequences were detected by fluorescence in situ hybridization on the wallaby Xp but not the Y. Since no chiasmata have been observed in marsupial sex chromosomes, it is unlikely that these shared sequences act as a pseudoautosomal region within which crossing over may occur, but they may be required for end-to-end associations. The shared region of wallaby X and Y chromosomes bears no homology with the recently added region of the eutherian sex chromosomes, so we conclude that independent additions occurred to both sex chromosomes in a eutherian and macropodid ancestor, as predicted by the addition-attrition hypothesis of sex chromosome evolution. Received: 18 October 1996 / Accepted: 21 February 1997  相似文献   

11.
The position of a gene in the genome may have important consequences for its function. Therefore, when a new duplicate gene arises, its location may be critical in determining its fate. Our recent work in humans, mouse, and Drosophila provided a test by studying the patterns of duplication in sex chromosome evolution. We revealed a bias in the generation and recruitment of new gene copies involving the X chromosome that has been shaped largely by selection for male germline functions. The gene movement patterns we observed reflect an ongoing process as some of the new genes are very young while others were present before the divergence of humans and mouse. This suggests a continuing redistribution of male-related genes to achieve a more efficient allocation of male functions. This notion should be further tested in organisms employing other sex determination systems or in organisms differing in germline X chromosome inactivation. It is likely that the selective forces that were detected in these studies are also acting on other types of duplicate genes. As a result, future work elucidating sex chromosome differentiation by other mutational mechanisms will shed light on this important process.  相似文献   

12.
Sex chromosomes can differ between species as a result of evolutionary turnover, a process that can be driven by evolution of the sex determination pathway. Canonical models of sex chromosome turnover hypothesize that a new master sex determining gene causes an autosome to become a sex chromosome or an XY chromosome pair to switch to a ZW pair (or vice versa). Here, a novel paradigm for the evolution of sex determination and sex chromosomes is presented, in which there is an evolutionary transition in the master sex determiner, but the X chromosome remains unchanged. There are three documented examples of the novel paradigm, and it is hypothesized that a similar process could happen in a ZW sex chromosome system. Three other taxa are also identified where the novel paradigm may have occurred, and how it could be distinguished from canonical trajectories in these and additional taxa is also described.  相似文献   

13.
It has become increasingly evident that gene content of the sex chromosomes is markedly different from that of the autosomes. Both sex chromosomes appear enriched for genes related to sexual differentiation and reproduction; but curiously, the human X chromosome also seems to bear a preponderance of genes linked to brain and muscle functions. In this review, we will synthesize several evolutionary theories that may account for this nonrandom assortment of genes on the sex chromosomes, including 1) asexual degeneration, 2) sexual antagonism, 3) constant selection, and 4) hemizygous exposure. Additionally, we will speculate on how the evolution of sex-chromosome gene content might have impacted on the phenotypic evolution of mammals and particularly humans. Our discussion will focus on the mammalian sex chromosomes, but will cross reference other species where appropriate.  相似文献   

14.
15.
A consensus sequence,encoding a putative DNA polymerase type B derived from a Polinton transposon,was assembled from the sex determination region of Xiphophorus maculatus.This predicted protein,which is 1,158 as in length,contains a DNA_pol_B_2 domain and a DTDS motif.The DNA polymerase type B gene has about 10 copies in the haploid X.maculatus genome with one Y-specific copy.Interestingly,it has specific copies on the W chromosome in the X.maculatus Usumacinta strain (sex determination with female heterogamety),which represent new markers for this type of sex chromosome in platyfish.This marker with W-and Y-specific copies suggests relationship between different types of gonosomes and allows comparing male and female heterogameties in the platyfish.Further molecular analysis of the DNA polymerase type B gene in X.maculatus will shed new light on the evolution of sex chromosomes in platyfish.  相似文献   

16.
In many species of animals, one of the sexes has a chromosome that is structurally and functionally different from its socalled homologue. Conventionally, it is called Y chromosome or W chromosome depending on whether it is present in males or females respectively. The corresponding homologous chromosomes are called X and Z chromosomes. The dimorphic sex chromosomes are believed to have originated from undifferentiated autosomes. In extant species it is difficult to envisage the changes that have occurred in the evolution of dimorphic sex chromosomes. In our laboratory, interracial hybridization between twoDrosophila chromosomal races has resulted in the evolution of a novel race, which we have called Cytorace 1. Here we record that in the genome of Cytorace 1 one of the autosomes of its parents is inherited in a manner similar to that of a classical Y chromosome. Thus this unique Cytorace 1 has the youngest neo-Y sex chromosome (5000 days old; about 300 generations) and it can serve as a ‘window’ for following the transition of an autosome to a Y sex chromosome.  相似文献   

17.
Sex chromosomes originated from ordinary autosomes, and their evolution is characterized by continuous gene loss from the ancestral Y chromosome. Here, we document a new feature of sex chromosome evolution: bursts of adaptive fixations on a newly formed X chromosome. Taking advantage of the recently formed neo-X chromosome of Drosophila miranda, we compare patterns of DNA sequence variation at genes located on the neo-X to genes on the ancestral X chromosome. This contrast allows us to draw inferences of selection on a newly formed X chromosome relative to background levels of adaptation in the genome while controlling for demographic effects. Chromosome-wide synonymous diversity on the neo-X is reduced 2-fold relative to the ancestral X, as expected under recent and recurrent directional selection. Several statistical tests employing various features of the data consistently identify 10%–15% of neo-X genes as targets of recent adaptive evolution but only 1%–3% of genes on the ancestral X. In addition, both the rate of adaptation and the fitness effects of adaptive substitutions are estimated to be roughly an order of magnitude higher for neo-X genes relative to genes on the ancestral X. Thus, newly formed X chromosomes are not passive players in the evolutionary process of sex chromosome differentiation, but respond adaptively to both their sex-biased transmission and to Y chromosome degeneration, possibly through demasculinization of their gene content and the evolution of dosage compensation.  相似文献   

18.
Although the X chromosome is usually similar to the autosomes in size and cytogenetic appearance, theoretical models predict that its hemizygosity in males may cause unusual patterns of evolution. The sequencing of several genomes has indeed revealed differences between the X chromosome and the autosomes in the rates of gene divergence, patterns of gene expression and rates of gene movement between chromosomes. A better understanding of these patterns should provide valuable information on the evolution of genes located on the X chromosome. It could also suggest solutions to more general problems in molecular evolution, such as detecting selection and estimating mutational effects on fitness.  相似文献   

19.
The Xq21.3/Yp11 homology block on the human sex chromosomes represents a recent addition to the Y chromosome through a transposition event. It is believed that this transfer of material occurred after the divergence of the hominid lineage from other great apes. In this paper we investigate the structure and evolution of the block through fluorescence in situ hybridisation, contig assembly, the polymerase chain reaction, exon trapping, sequence comparison, and annotation of sequence data. The overall structure is well conserved between the human X chromosome and the Y chromosome as well as between the X chromosomes from different primates. Although the sequence data reveal a high level of nucleotide sequence identity for the human X and Y, there are regions of significant divergence, such as that around the marker DXS214. These are presumably the consequence of multiple rearrangements during evolution and are of particular importance with respect to the potential gene content in this segment of the interval.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号