首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chaperone function of alpha-crystallin is significantly affected in diabetes. Increased formation of advanced glycation end products (AGEs) is the likely cause. This study was aimed to investigate the effect of AGE crosslinks on the chaperone activity of alpha-crystallin and to show the effect of an AGEs crosslink breaker, phenacyl-4,5-dimethylthiazolium bromide (DMPTB). Recombinant alphaA-crystallin was prepared by expressing it in Escherichia coli and purified by size exclusion chromatography. Glycation of alphaA-crystallin was performed with 1-100 mM glucose-6-phosphate (G6P) as the glycating agent for a period of 1-15 days. To break AGE crosslinks, pre-glycated alphaA-crystallin was treated with 0.1-20 mM DMPTB for 3 days. Excess G6P and DMPTB were removed by gel filtration before performing additional experiments. AGEs and crosslinked proteins were estimated by measuring non-tryptophan fluorescence and by SDS-PAGE. Chaperone activity was determined with alcohol dehydrogenase as the target protein. With increasing duration of glycation and G6P concentration, chaperone activity of alpha-crystallin decreased. When pre-glycated alphaA-crystallin was treated with 5-20 mM DMPTB, a DMPTB concentration-dependent recovery of chaperone activity was seen. Lower concentrations, 0.1, 0.5, and 1.0 mM, of DMPTB also showed significant recovery of the chaperone activity. SDS-PAGE analysis after DMPTB treatment showed 40% decrease in crosslinked proteins and fluorescence scan indicated 30% decrease in AGEs. DMPTB is expected to regain alpha-crystallin chaperone activity and provide structural stability to other eye lens proteins that are in aggregation mode which emphasizes the clinical importance of the present finding.  相似文献   

2.
We report the presence of bile salt-stimulated lipase in milk collected from dog and cat. This enzyme has previously been found only in the milk of human and gorilla. Bile salt-stimulated lipase activity in individual dog milk specimens (range: 4.8-107.4 U/ml; 1 U = 1 mumol [3H]oleic acid released/min) was similar, while that in cat milk specimens (range: 2.2-16.9 U/ml) was lower than in human milk (range: 10-80 U/ml). Longitudinal patterns for bile salt-stimulated lipase activity differed depending upon the enzyme source: in dog milk, lipase activity was lowest in colostrum, while in cat milk, lipase activity was highest in colostrum and decreased at mid-lactation. In human milk, bile salt-stimulated lipase activity levels remain fairly constant throughout the first 3 months of lactation. Dog, cat and human milk bile salt-stimulated lipase activity had a neutral-to-alkaline pH optimum of 7.3-8.5, was stable at low pH (above 3.0 for at least 1 h), and was inhibited 95-100% by eserine (at concentrations greater than 0.6 mM). The lipase in the milk of the three species studied had an absolute requirement for primary bile salts (tauro- and glycocholate), and was inhibited by secondary bile salts (tauro- and glycodeoxycholate). These data are the first to report bile salt-stimulated lipase activity in milk from mammals other than the highest primates. Presence of this lipase in non-primate milk will permit the study of the factors that regulate the ontogeny, synthesis and secretion of the enzyme during pregnancy and lactation as well as its function in neonatal fat digestion.  相似文献   

3.
A new approach for the determination of lipase (triacylglycerol lipase, EC.3.1.1.3) activity in a biological sample was investigated by combining an immunocapture technique with a chemiluminescence (CL) assay method in order to eliminate interference with CL detection. The proposed method consists of an immunocapture step to trap lipase and a subsequent step for CL detection of the activity of the captured lipase. The CL detection is based on the luminol-hydrogen peroxide (H(2)O(2))-horseradish peroxidase (HRP) reaction and utilizes a proenhancer substrate [a lauric acid ester of 2-(4-hydroxyphenyl)-4,5-diphenylimidazole (HDI)] which liberates an active enhancer, HDI, by enzymatic hydrolysis. A polyclonal antibody prepared with porcine pancreas lipase was used for the immunocapture. The proposed immunocapture-CL method effectively eliminated the interference with the CL reaction from biological components and enabled the determination of spiked porcine pancreas lipase activity in serum samples in the range 0.41-1.1 U(HDI) (1 U(HDI) corresponds to the amount which liberates 1 pmol HDI/min at 37 degrees C from the substrate). The method was further applied to the assay of the activity for human pancreas lipase in serum and the results showed good correlation (r = 0.871) with those by the conventional colorimetric method.  相似文献   

4.
Ultrafine cellulose fiber (diameter 200-400 nm) surfaces were grafted with polyacrylic acid (PAA) via either ceric ion initiated polymerization or methacrylation of cellulose with methacrylate chloride (MACl) and subsequent free-radical polymerization of acrylic acid. PAA grafts by ceric ion initiated polymerization increased with increasing reaction time (2-24 h), monomer (0.3-2.4 M), and initiator (1-10 mM) concentrations, and spanned a broad range from 5.5-850%. PAA grafts on the methacrylated cellulose fibers also increased with increasing molar ratios of MACl to cellulosic hydroxyl groups (MACl/OH, 2-6.4) and monomer acrylic acid (AA) to initiator potassium persulfate (KPS) ratios ([AA]/[KPS], 1.5-6), and were in a much narrower range between 12.8% and 29.4%. The adsorption of lipase (at 1 mg/ml lipase and pH 7) and the activity of adsorbed lipase (pH 8.5, 30 degrees C), in both cases decreased with increasing PAA grafts. The highest adsorption and activity of the lipase on the ceric ion initiated grafted fibers were 1.28 g/g PAA and 4.3 U/mg lipase, respectively, at the lowest grafting level of 5.5% PAA, whereas they were 0.33 g/g PAA and 7.1 U/mg lipase, respectively, at 12.8% PAA grafts on the methacrylated and grafted fibers. The properties of the grafted fibers and the absorption behavior and activity of lipase suggest that the PAA grafts are gel-like by ceric-initiated reaction and brush-like by methacrylation and polymerization. The adsorbed lipase on the ceric ion-initiated grafted surface possessed greatly improved organic solvent stability over the crude lipase. The adsorbed lipases exhibited 0.5 and 0.3 of the initial activity in the second and third assay cycles, respectively.  相似文献   

5.
Dai D  Xia L 《Biotechnology progress》2005,21(4):1165-1168
Alkaline lipase production was performed in submerged fermentation by Penicillium expansum PED-03. It was found that the suitable carbon source and nitrogen source for lipase production were 0.5% starch and 4.0% soybean meal, respectively. The maximal lipase activity (850 U/mL) of production was achieved at initial pH 5.5-6.0, 26 degrees C, 72 h. Tween-80 was an effective enhancer for lipase production. Agitation speed of the fermentor played an important role, and the suitable agitation speed for lipase production was 500 r/min. The lipase was stable within the range of pH 7.0-10.0 and 20-40 degrees C, and the optimum conditions for the enzymatic reaction were 35 degrees C and pH 9.5. The enzymatic resolution of racemic allethrolone (4-hydroxy-3-methyl-2-(2-propenyl)-2- cyclopenten-1-one) was carried out by the lipase from P. expansum PED-03, and the conversion reached 48% with excellent enantioselectivity (E > 100), which showed a good application potential in the production of optically pure allethrolone.  相似文献   

6.
Marine fungus BTMFW032, isolated from seawater and identified as Aspergillus awamori, was observed to produce an extracellular lipase, which could reduce 92% fat and oil content in the effluent laden with oil. In this study, medium for lipase production under submerged fermentation was optimized statistically employing response surface method toward maximal enzyme production. Medium with soyabean meal-0.77% (w/v); (NH(4))(2)SO(4)-0.1m; KH(2)PO(4)-0.05 m; rice bran oil-2% (v/v); CaCl(2)-0.05 m; PEG 6000-0.05% (w/v); NaCl-1% (w/v); inoculum-1% (v/v); pH 3.0; incubation temperature 35°C and incubation period-five days were identified as optimal conditions for maximal lipase production. The time course experiment under optimized condition, after statistical modeling, indicated that enzyme production commenced after 36 hours of incubation and reached a maximum after 96 hours (495.0 U/ml), whereas maximal specific activity of enzyme was recorded at 108 hours (1164.63 U/mg protein). After optimization an overall 4.6-fold increase in lipase production was achieved. Partial purification by (NH(4))(2)SO(4) precipitation and ion exchange chromatography resulted in 33.7% final yield. The lipase was noted to have a molecular mass of 90 kDa and optimal activity at pH 7 and 40°C. Results indicated the scope for potential application of this marine fungal lipase in bioremediation.  相似文献   

7.
An intracellular lipase present in the whiteleg shrimp Litopenaeus vannamei was detected in pleopods. The lipase from pleopods was purified and characterized by biochemical and kinetic parameters. Purified intracellular lipase has a molecular mass of 196kDa, the polypeptide is assembled by two monomers, 95.26 and 63.36kDa. The enzyme lacks glycosylation, and it has an isoelectric point of 5.0. The enzyme showed the highest activity at a temperature range of 30-40°C at pH 8.0-10.0. Activity was completely inhibited by tetrahydrolipstatin and diethyl p-nitrophenyl phosphate, suggesting that the intracellular lipase is a serine lipase. The lipase hydrolyzes short and long-chain triacylglycerides, as well as naphthol derivatives at comparable rates in contrast to other sources of lipases. Specific activity of 930U mg(-1) and 416.56U mg(-1) was measured using triolein and tristearin at pH 8.0 at 30°C as substrates, respectively. The lipase showed a K(M,app) of 41.03mM and k(cat)/K(M,app) ratio of 4.88 using MUF-butyrate as the substrate. The intracellular lipase described for shrimp has a potential role in hydrolysis of triacylglycerides stored as fat body, as has been shown in humans.  相似文献   

8.
The Ellman method for assaying thiols is widely used for cholinesterase activity measurement. Cholinesterase activity is measured indirectly by quantifying the concentration of 5-thio-2-nitrobenzoic acid (TNB) ion formed in the reaction between the thiol reagent 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) and thiocholine, a product of substrate (i.e., acetylthiocholine [ATCh]) hydrolysis by the cholinesterase. Oximes, reactivators of inhibited cholinesterase, are nucleophiles that also react with ATCh (oximolysis), producing thiocholine and (indirectly) TNB ion. The aim of this study was to characterize ATCh oximolysis. Therefore, we measured the oximolysis between oximes (K027 and HI-6) and ATCh in the presence of DTNB at different pH values, taking into account the final concentration of a product that is thiocholine. To confirm oximate ion involvement in the nucleophilic attack, we also determined the reaction rate between the oximes and ATCh, without DTNB, at different pH values by measuring the decrease in oximate ion absorption over time. The oximate ion of K027 reacted 14 times faster with ATCh (306M(-1)min(-1)) than the oximate ion of HI-6 (22M(-1)min(-1)). However, the rate constants obtained with the Ellman method were 84M(-1)min(-1) for K027 and 22M(-1)min(-1) for HI-6. Our results confirmed that the rate obtained with K027 using the Ellman method is actually the rate of the Ellman reaction itself. This suggests that the Ellman method cannot be used uncritically to evaluate oxime reaction with choline esters, in particular when oximolysis is faster than the Ellman reaction itself at a given pH.  相似文献   

9.
The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222%), and wheatgerm oil (210%) in comparison to olive oil (100%).  相似文献   

10.
AIM: Statistical medium optimization for maximum production of a hyperthermostable lipase from Burkholderia cepacia and its validation in a bioreactor. METHODS AND RESULTS: Burkholderia cepacia was grown in shake flasks containing 1% glucose, 0.1% KH2PO4, 0.5% NH4Cl, 0.24% (NH4)2HPO4, 0.01% MgSO4.7H2O and 1% emulsified palm oil, at 45 degrees C and pH 7.0, agitated at 250 rev min(-1) with 6-h-old inoculum (2% v/v) for 20 h. A fourfold enhancement in lipase production (50 U ml(-1)) and an approximately three fold increase in specific activity (160 U mg(-1)) by B. cepacia was obtained in a 14 litre bioreactor within 15 h after statistical optimization following shake flask culture. The statistical model was obtained using face centred central composite design (FCCCD) with five variables: glucose, palm oil, incubation time, inoculum density and agitation. The model suggested no interactive effect of the five factors, although incubation period, inoculum and carbon concentration were the important variables. CONCLUSIONS: The maximum lipase production was 50 U ml(-1), with specific activity 160 U mg(-1) protein, in a 14 litre bioreactor after 15 h in a medium obtained after statistical optimization in shake flasks. Further, the model predicted reduction in time for lipase production with reduction in total carbon supply. SIGNIFICANCE AND IMPACT OF THE STUDY: Statistical optimization allows quick optimization of a large number of variables. It also provides a deep insight into the regulatory role of various parameters involved in enzyme production.  相似文献   

11.
Fatty acid synthetase of chicken liver is rapidly and reversibly inactivated by 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) at a rate (k2 = 132 mM-1 S-1 in 3 mM EDTA, 1% (v/v) glycerol, pH 7.0, at 25 degrees C) up to 2200 times higher than the reaction of this reagent with simple thiol compounds. The inactivation is caused by the reaction of the phosphopantetheine SH group, since it is protected competitively by either acetyl- or malonyl-CoA, and since the inactivated enzyme is unreactive with the phosphopantetheine label chloroacetyl-CoA but reactive with the cysteine reagent 1,3-dibromopropanone. Moreover, chloroacetyl-CoA prevents the modification of the rapidly reacting essential SH group by DTNB. The number of SH groups involved in inactivation was determined by correlating activity loss with the extent of reaction and by stopped-flow analysis of substrate (or chloroacetyl-CoA) protection. Values between 0.91 and 1.15 SH groups/dimer were obtained, indicating the presence of substoichiometric amounts of the prosthetic group in the fatty acid synthetase preparations used in this study. Inactivation of the synthetase by DTNB is strongly inhibited by increasing salt concentration and protected noncompetitively by NADP+ and NADPH. Treatment of the enzyme inactivated at low salt by salt, NADP+, or NADPH also effectively reduced cross-linking between enzyme subunits. The parallel effects of these treatments on the reaction with DTNB and subsequent dimerization are consistent with a minimum model of two discreet conformation states for fatty acid synthetase. In the low salt conformer, the phosphopantetheine and cysteine SH groups are juxtaposed, and the DTNB reaction (k2 approximately 132 mM-1 S-1) and dimerization are both facilitated. Transition to the high salt conformer by the above treatments is accompanied by an approximately 20-fold reduction of reactivity with DTNB (k2 = 6.8 mM-1 S-1) and reduced dimerization, due to spatial separation of the SH groups. During palmitate synthesis, the enzyme may oscillate between these conformation states to permit the reaction of intermediates at different active sites. Results obtained by studies on the effect of pH on DTNB inactivation implicate a pK of 5.9-6.1 for the essential SH group independent of salt concentration. This value is 1.5-1.8 pH units lower than the pK of 7.6-7.7 for CoA and may explain the 23-fold increase of the rate constant from a value of 0.3 mM-1 S-1 for CoA to that of the high salt conformer.  相似文献   

12.
从242株青霉属菌株中筛选出脂肪酶产生菌青霉-PG3。经鉴定,定名为卡门柏青霉(Penicillium camembertii Thom)。卡门柏青霉-PG3在由4%豆饼粉,0.5%糊精,0.75%橄榄油,0.5%K_2HPO_4,0.1%(NH_4)_2SO_4组成的液体培养基中,28℃,振荡培养96小时,发酵液脂肪酶活力(39℃,pH7.0)达60U/ml。PG3脂肪酶以橄榄油为底物,水解反应最适温度为48℃,最适pH为8.0。pH稳定范围6.0—11.0。Cu~(2+),Ca~(2+),Fe~(2+),Pb~(2+)等金属离子对酶活力有抑制作用。PG3脂肪酶对椰子油、菜籽油、亚麻油等油脂的水解率分别达到96%,94%和90%。  相似文献   

13.
Energized rat liver mitochondria in the presence of EGTA reduced linearly 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) at the rate of 7 nmol SH/min per mg protein within more than 1 hour at 20 degrees C. The Km for DTNB, 1.4 mM, was decreased by Mg2+ and spermine to 0.5 and 0.7 mM, respectively. The reaction was suppressed under conditions of decreasing mitochondrial content of NADPH, was blocked by 1,3-bis-(2-chloroethyl)-1-nitrosourea, the inhibitor of disulfide reductases, and was sensitive to external free Ca2+ in the micromolar range. After lysis of mitochondria the reduction of DTNB required the addition of NADPH and EGTA and was inhibited by 1 mM sodium arsenite. These observations suggest that the reduction of DTNB by mitochondria is catalyzed by Ca(2+)-sensitive thioredoxin reductase (EC 1.6.4.5).  相似文献   

14.
Shearing experiments were conducted in a stirred tank reactor with 0.1% lipase solutions of Candida cylindracea. Inactivation of the lipase solutions were observed at various shear rates from 50 to 150 s(-1) after continuous shearing for ca. 30-240 min under optimal pH and temperature conditions. However, there was no shear stress denaturation of the lipase when it was subjected to shear stresses of 0.72-109.2 kg/m/s(2) and shear rate of 100 s(-1). In the presence of polypropylene glycol, the rate of denaturation of the lipase decreased by 93%. When the lipase solution was filled to the brim, the rate of denaturation of the lipase decreased by 97% compared to that when reactor was half-filled. The rate of denaturation of the lipase decreased by 61% when probes in the fermentor were removed. There was no significant difference in the rate of denaturation of the lipase under ambient conditions compared with that in the absence of oxygen, or in the absence of free metal ions. Recovery of lipase activity from the first hour of shearing was observed at a shear rate of 150 s(-1). The native lipase and the lipase which had recovered its activity showed similar pH profiles, temperature profiles, and activation energies. Temperature was found to have no effect in the rate of shear-induced denaturation of the lipase in the range 20 to 30 degrees C during shearing at 100 s (-1)and optimal pH. Above 30 degrees C, the rate of denaturation of the lipase increased drastically as a function of temperature. The significance of the findings in the de sign of reactor systems for hydrolysis or esterification of oils by lipase will be discussed.  相似文献   

15.
Three methods for enzyme modification/immobilization were compared to enhance the catalytic performance of a commercially available lipase, Lipase PS from Pseudomonascepacia, in highly enantioselective transesterification of an agrochemically useful sec-alcohol, (R,?S)-HMPC [=(R,?S)-4-hydroxy-3-methyl-2-(2′-propenyl)-2-cyclopenten-1-one], with vinyl acetate as both acyl donor and reaction medium. The stearic acid-coated lipase showed the highest catalytic activity, with a specific activity improved by 54 times over the native lipase. The microcrystal salt-supported lipase and celite-adsorbed lipase also displayed much better performance as compared with the native lipase. All the three modified lipase preparations showed a similar thermal stability to that of the native enzyme. The enantioselectivity (E-value) was also quite satisfactory in all the cases (E>100 at 30°C), though a trend of slight decline was also observed with the temperature increase in the range of 25–60°C. The optimum aqueous pH, from which the modified lipases were prepared, was 6.0–7.0. A low water activity (aw) of ca. 0.1 was favorable for all the three modified lipases. The stearic acid-coated lipase displayed prominent advantages in catalyzing the transesterification reaction at a very high (R,?S)-HMPC concentration up to 1.0?M.  相似文献   

16.
The source of the lipase(s) acting in the stomach was investigated in five animal species: rat, mouse (rodents), rabbit (lagomorphs), guinea pig (caviidae), baboon and human (primates). The activity of lingual and gastric lipases was quantitated in homogenates of lingual serous glands and of gastric mucosa, respectively, by the hydrolysis of tri[3H]oleylglycerol and is expressed in units/g (1 U = 1 mumol [3H]oleic acid released/min) per g tissue wet weight, mean +/- S.E. There were marked differences in the activity level of lingual and gastric lipases among species: mouse and rat had high levels of lingual lipase activity (250 +/- 20 and 824 +/- 224 U/g) and only traces of gastric lipase activity (4.5 +/- 0.9 and 0.04 U/g, respectively), whereas rabbit and guinea pig had no lingual lipase activity and only gastric lipase activity (78 +/- 48 and 27 +/- 7.4 U/g, respectively). In the baboon and human, gastric lipase was the predominant enzyme (109 +/- 20 U/g and 118 +/- 8.8 U/g, respectively), whereas lingual lipase activity was present in trace amounts only (0.04 U/g and 0.3 U/g, respectively). In addition to species differences in the origin of the preduodenal lipases, there were also species differences in the distribution of gastric lipase in the stomach. Thus, while in the rabbit, gastric lipase was localized exclusively in the cardia and body of the stomach, it was diffusely distributed in the entire stomach of the guinea pig and baboon. A comparison between the level of activity of lipase and pepsin (the two chief digestive enzymes secreted by the stomach), showed differences in their localization in the species studied. The difference in source (tongue vs. stomach) and site (cardia-body vs. entire stomach) of lipase secretion must be taken into account in future studies of these digestive enzymes. Although the exact contribution of lingual and gastric lipases individually to fat digestion in species which contain both enzymes cannot yet be evaluated, the markedly higher levels of gastric lipase activity in the baboon and human suggests that, in primates, gastric lipase is probably the major non-pancreatic digestive lipase.  相似文献   

17.
Enzyme extraction from solid matrix is as important step in solid-state fermentation to obtain soluble enzymes for further immobilization and application in biocatalysis. A method for the recovery of a pool of lipases from Penicillium simplicissimum produced by solid-state fermentation was developed. For lipase recovery different extraction solution was used and phosphate buffer containing Tween 80 and NaCl showed the best results, yielding lipase activity of 85.7 U/g and 65.7 U/g, respectively. The parameters with great impacts on enzyme extraction detected by the Plackett-Burman analysis were studied by Central Composite Rotatable experimental designs where a quadratic model was built showing maximum predicted lipase activity (160 U/g) at 25°C, Tween 80 0.5% (w/v), pH 8.0 and extraction solution 7 mL/g, maintaining constant buffer molarity of 0.1 M and 200 rpm. After the optimization process a 2.5 fold increase in lipase activity in the crude extract was obtained, comparing the intial value (64 U/g) with the experimental design (160 U/g), thus improving the overall productivity of the process.  相似文献   

18.
The effect of insulin on the state of phosphorylation of hormone-sensitive lipase, cellular cAMP-dependent protein kinase activity and lipolysis was investigated in isolated adipocytes. Increased phosphorylation of hormone-sensitive lipase in response to isoproterenol stimulation was closely paralleled by increased lipolysis. Maximal phosphorylation and lipolysis was obtained when the cAMP-dependent protein kinase activity ratio was greater than or equal to 0.1, and this corresponded to a 50% increase in the state of phosphorylation of hormone-sensitive lipase. Insulin (1 nM) reduced cAMP-dependent protein kinase activity and also reduced lipolysis with both cAMP-dependent and cAMP-independent antilipolytic effects up to an activity ratio of approximately 0.4, above which the antilipolytic effect was lost. Insulin caused a decrease in the state of phosphorylation of hormone-sensitive lipase at all levels of cAMP-dependent protein kinase activity. Under basal conditions, with cAMP-dependent protein kinase activity at a minimum, this reflected a dephosphorylation of the basal phosphorylation site of hormone-sensitive lipase in a manner not mediated by cAMP. When the cAMP-dependent protein kinase was stimulated to phosphorylate the regulatory phosphorylation site of hormone-sensitive lipase, the insulin-induced dephosphorylation occurred both at the basal and regulatory sites. At low levels of cAMP-dependent protein kinase activity ratios (0.05-0.1), dephosphorylation of the regulatory site correlated with reduced cAMP-dependent protein kinase activity, but not at higher activity ratios (greater than 0.1). Stimulation of cells with isoproterenol produced a transient (1-5 min) peak of cAMP-dependent protein kinase activity and of phosphorylation of hormone-sensitive lipase. The state of phosphorylation also showed a transient peak when the protein kinase was maximally and constantly activated. In the presence of raised levels of cellular cAMP, insulin (1 nM) caused a rapid (t1/2 approximately 1 min) dephosphorylation of hormone-sensitive lipase. In unstimulated cells the reduction in phosphorylation caused by insulin was distinctly slower (t1/2 approximately 5 min). These findings are interpreted to suggest that insulin affects the state of phosphorylation of hormone-sensitive lipase and lipolysis through a cAMP-dependent pathway, involving reduction of cAMP, and through a cAMP-independent pathway, involving activation of a protein phosphatase activity that dephosphorylates both the regulatory and basal phosphorylation sites of hormone-sensitive lipase.  相似文献   

19.
Lipase (Glycerol ester hydrolase EC 3.1.1.3.) from a Brazilian strain of Fusarium solani FSI has been investigated. The effect of different carbon sources and trace elements added to basal medium was observed with the aim of improving enzyme production. Lipase specific activity was highest (0.45 U mg(-1)) for sesame oil. When this medium was supplemented with trace elements using olive oil, corn oil and sesame oil the lipase specific activity increased to 0.86, 1.89 and 1.64 U mg(-1), respectively, after 96 h cultivation without any considerable biomass increase. The Km of this lipase using pNPP (p-nitrophenylpalmitate) as substrate, was 1.8 mM with a Vmax of 1.7 micromol min(-1) mg protein(-1). Lipase activity increased in the presence of increasing concentrations of hexane and toluene. In contrast, incubation of this enzyme with water-soluble solvents decreased its activity after 10% concentration (v/v) of the solvent. The lipase activity was stable below 35 degrees C but above this temperature activity losses were observed.  相似文献   

20.
Human serum lipoamidase   总被引:1,自引:0,他引:1  
K Hayakawa  J Oizumi 《Enzyme》1988,40(1):30-36
Thirty-two human serum specimens were assayed for lipoamidase (lipoyl-4-aminobenzoate hydrolase) activity. All sera had lipoamidase activities. This substrate was newly synthesized by us and had a satisfying purity as evaluated by HPLC-fluorimetric detection. Product (p-aminobenzoate) liberated was determined directly by the HPLC-fluorimetric method. Liberation of the product was linearly continued for 6 h. The pH optimum of serum lipoamidase was found to be 7.0. The effect of substrate concentration on human serum lipoamidase activity was examined and the reaction was saturated at 0.1 mmol/l. The sera obtained were from individuals aged from 1 to 8 years. The mean value of serum lipoamidase activity was found to be 1.50 U/l (SD 1.037, range 0.04-3.75, n = 32). The difference of sex effects was analyzed and no significant difference was found (males: n = 14, mean 1.48, SD 1.162, range 0.04-3.75; females: n = 18, mean 1.52, SD 0.963, range 0.48-3.51) among this age group. Biotinidase activity was also determined in these 32 serum specimens and the correlation was examined. The mean biotinidase activity was 3.16 U/l (SD 2.567, range 0.35-9.37). The correlation coefficient (r) between lipoamidase activity and biotinidase activity was 0.8931. Although the physiological significance of lipoamidase has not been known, the enzyme might play an important role in recycling of lipoate as biotinidase does.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号