首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
In many animals reproductive success is determined after insemination by the interaction of male and female processes. While sperm competition is reasonably well understood in some taxa, other processes, such as cryptic female choice and differential early embryo mortality resulting from genetic incompatibilities, are less well understood. The relative importance of these different factors contributing to reproductive success is difficult to assess. Here we control for male-mediated effects (which are often considerable and can mask more subtle processes) through the artificial insemination of known numbers of sperm in the domestic fowl to reveal that male reproductive success is nontransitive across females: the success of a particular male depends on the background against which his sperm compete for fertilization. Two potential processes could account for this effect: cryptic female choice (sperm choice) or differential early embryo mortality. Regardless of the mechanism, nontransitivity of male reproductive success has important evolutionary consequences, including the maintenance of variation in male fitness.  相似文献   

4.
5.
The laboratory rat (R. norvegicus) is a very important experimental animal in several fields of biomedical research. This review describes the various techniques that have been used to generate transgenic rats: classical DNA microinjection and more recently described techniques such as lentiviral vector-mediated DNA transfer into early embryos, sperm-mediated transgenesis, embryo cloning by nuclear transfer and germline mutagenesis. It will also cover techniques associated to transgenesis such as sperm cryopreservation, embryo freezing and determination of zygosity. The availability of several technologies allowing genetic manipulation in the rat coupled to genomic data will allow biomedical research to fully benefit from the rat as an experimental animal.  相似文献   

6.
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.  相似文献   

7.
Munro E 《Current biology : CB》2007,17(16):R639-R641
To divide asymmetrically, a cell must position the mitotic spindle relative to localized cell fate determinants. Recent work in the early ascidian embryo reveals the function of a single factor that coordinates this act to control cleavage pattern and cell fate determination.  相似文献   

8.
Cytoskeleton in preimplantation mouse development   总被引:1,自引:0,他引:1  
This paper reviews the constituents of the cytoskeleton in the cells of the preimplantation mouse embryo and how they change as the development proceeds. The cytoskeleton can be divided into two distinct groups, that in the cytosplasm and that associated with the membrane. The first and better-known group contains microfilaments, microtubules and intermediate filaments, the second such components of the cell and nuclear membrane as spectrin-like protein and nuclear lamin. The filamentous components of the cytoplasmic cytoskeleton adhere to the nuclear and cell membrane at attachment points where specific proteins such as vinculin may mediate the interaction. Each cell of the early embryo has all of these components, but their morphological organization and molecular constitution alter as the embryo develops. These modifications are especially pronounced when the cleavage-stage embryo compacts and when the blastocysts forms and differentiates. These events represent the most critical stages of morphogenesis and cytodifferentiation in the preimplantation embryo. The cytoskeleton may thus have an important role in the control of the early mammalian development.  相似文献   

9.
The oviduct is an important reproductive structure that connects the ovary to the uterus and takes place to important events such as oocyte final maturation, fertilization and early embryonic development. Thus, gametes and embryo can be directly influenced by the oviductal microenvironment composed by epithelial cells such secretory and ciliated cells and oviductal fluid. The oviduct composition is anatomically dynamic and is under ovarian hormones control. The oviductal fluid provides protection, nourishment and transport to gametes and embryo and allows interaction to oviductal epithelial cells. All these functions together allows the oviduct to provides the ideal environment to the early reproductive events. Extracellular vesicles (EVs) are biological nanoparticles that mediates cell communication and are present at oviductal fluid and plays an important role in gametes/embryo - oviductal cells communication. This review will present the ability of the oviducts based on its dynamic and systemic changes during reproductive events, as well as the contribution of EVs in this process.  相似文献   

10.
The neural crest gives rise to glial cells in the peripheral nervous system. Among the peripheral glia, Schwann cells form the myelin often wrapping the peripheral axons. Compared to other crest-derived cell lineages such as neurons, the analysis of fate determination and subsequent differentiation of Schwann cells is not well advanced, partly due to the lack of early markers of this phenotype. In this study, we have identified a gene, uniquely expressed in avian embryo Schwann cell precursors, which encodes a novel secreted factor, designated Seraf (Schwann cell-specific EGF-like repeat autocrine factor). Expression of Seraf and P0 delineates the earliest phase of Schwann cell differentiation. Seraf binds to neural crest cells and Schwann cells, and affects the distribution of Schwann cells, when introduced to chicken embryos during neural crest migration. Our results suggest an autocrine function of Seraf and provide a significant step to understand the developmental processes of Schwann cell lineage.  相似文献   

11.
Unveiling the establishment of left-right asymmetry in the chick embryo   总被引:2,自引:0,他引:2  
Vertebrates display striking left-right asymmetries in the placement of internal organs, which are concealed by a seemingly bilaterally symmetric body plan. The establishment of asymmetries about the left-right axis occurs early during embryo development and requires the concerted and sequential action of several epigenetic, genetic and cellular mechanisms. Experiments in the chick embryo model have contributed crucially to our current understanding of such mechanisms and are reviewed here. Particular emphasis is given to the elucidation of a genetic network that conveys left-right information from Hensen's node to the organ primordia, characterized to a significant degree of detail in the chick embryo. We also point out a number of early and late events in the determination of left-right asymmetries that are currently poorly understood and for whose study the chick embryo model presents several advantages. We anticipate that the availability of the chick genome sequence will be combined with multidisciplinary approaches from experimental embryology, biophysics, live-cell imaging, and mathematical modeling to boost up our knowledge of left-right organ asymmetry in the near future.  相似文献   

12.
 The teleost dorsoventral axis cannot be distinguished morphologically before gastrulation. In order to examine whether the yolk cell affects axis determination, we bisect early cleavage embryos of the goldfish, Carassius auratus. When the vegetal yolk hemisphere is removed by bisection along the equatorial plane at the 2-cell stage, the embryos develop abnormally and exhibit a symmetrical morphology. No dorsal structures, such as notochord, somites and neural tube, differentiate and no embryonic shield is formed during gastrulation. In addition, no goosecoid mRNA is expressed before gastrulation. The frequency of abnormality decreases as the age at which the vegetal yolk hemisphere is removed increases. Most embryos removed at the 32-cell stage develop normally. Their morphological phenotype is similar to that of a Xenopus ventralized embryo generated by ultraviolet irradiation on the vegetal hemisphere soon after fertilization. We also observed that, when the embryos were bisected along the first cleavage plane at the 2-cell stage, the proportion of pairs of embryos of which one embryo developed normally was 44.8%. These results indicate that the vegetal yolk hemisphere of the early cleavage embryo of the goldfish contains axis determination factor(s), which are necessary for generation of dorsal structures. Furthermore, it is suggested that these determinant(s) are distributed asymmetrically within the vegetal yolk hemisphere. Received: 25 May 1996 / Accepted: 19 September 1996  相似文献   

13.
Only 25 to 30% of conceptions result in a live birth. There is mounting evidence that the cause for this low fecundity is an extremely high incidence of chromosomal rearrangements occurring in the cleavage stage embryo. In this review, we gather all recent evidence for an extraordinary degree of mosaicisms in early embryogenesis. The presence of the rearrangements seen in the cleavage stage embryos can explain the origins of the placental mosaicisms seen during chorion villi sampling as well as the chromosomal anomalies seen in early miscarriages. Whereas these rearrangements often lead to implantation failure and early miscarriages, natural selection of the fittest cells in the embryo is the likely mechanism leading to healthy fetuses.  相似文献   

14.
哺乳动物早期胚胎体外发育阻滞的研究进展   总被引:11,自引:0,他引:11  
王敏康  刘冀珑  陈永福  陈大元 《遗传》2001,23(4):391-395
哺乳动物胚胎在体外培养中普遍存在早期发育阻滞的现象。对此,人们用形态学、生物化学、分子生物学、显微操作等手段开展了磷酸、葡萄糖、次黄嘌呤和细胞质因素对早期胚胎发育阻滞的影响的研究。本综合分析了共培养系统的优缺点。说明了采用完全成分已知的培养液对进行有关研究的必要性。列出了有效运用于克服小鼠、大鼠、仓鼠、兔、猪、羊、牛、猴等动物早期胚胎阻滞的成分知的培养液的名称。  相似文献   

15.
Gardner DK 《Theriogenology》1998,49(1):83-102
Along with the transition from maternal to embryonic genome control the mammalian preimplantation embryo undergoes significant changes in its physiology during development. Concomitant with these changes are altering patterns of nutrient uptake and differences in the subsequent fate of such nutrients. The most significant nutrients to the developing mammalian preimplantation embryo are carbohydrates and amino acids, which serve not only to provide energy but also to maintain embryo function by preventing cellular stress induced by suboptimal culture conditions in vitro. It is subsequently proposed that optimal development of the mammalian embryo in culture requires the use of two or more media, each designed to cater for the changing requirements of the embryo. Importantly, culture conditions that maintain the early embryo are not ideal for the embryo post-compaction, and conditions that support excellent development and differentiation of the blastocyst can actually be inhibitory to the zygote. A marker of in vitro-induced cellular stress to the embryo is the relative activity of the metabolic pathways used to generate energy for development. Quantification of embryo energy metabolism may therefore serve as a valuable marker of embryo development and viability.  相似文献   

16.
Caenorhabditis elegans has often been used as a model system in studies of early developmental processes. The transparency of the embryos, the genetic resources, and the relative ease of transformation are qualities that make C. elegans an excellent model for early embryogenesis. Laser-based confocal microscopy and fluorescently labeled tags allow researchers to follow specific cellular structures and proteins in the developing embryo. For example, one can follow specific organelles, such as lysosomes or mitochondria, using fluorescently labeled dyes. These dyes can be delivered to the early embryo by means of microinjection into the adult gonad. Also, the localization of specific proteins can be followed using fluorescent protein tags. Examples are presented here demonstrating the use of a fluorescent lysosomal dye as well as fluorescently tagged histone and ubiquitin proteins. The labeled histone is used to visualize the DNA and thus identify the stage of the cell cycle. GFP-tagged ubiquitin reveals the dynamics of ubiquitinated vesicles in the early embryo. Observations of labeled lysosomes and GFP:: ubiquitin can be used to determine if there is colocalization between ubiquitinated vesicles and lysosomes. A technique for the microinjection of the lysosomal dye is presented. Techniques for generating transgenenic strains are presented elsewhere (1, 2). For imaging, embryos are cut out of adult hermaphrodite nematodes and mounted onto 2% agarose pads followed by time-lapse microscopy on a standard laser scanning confocal microscope or a spinning disk confocal microscope. This methodology provides for the high resolution visualization of early embryogenesis.  相似文献   

17.
The orientation of cell division has a crucial role in early embryo body plan specification, axis determination and cell fate diversity generation, as well as in the morphogenesis of tissues and organs. In many instances, cell division orientation is regulated by the planar cell polarity (PCP) pathways: the Wnt/Frizzled non-canonical pathway or the Fat/Dachsous/Four-jointed pathway. Firstly, using asymmetric cell division in both Drosophila and C. elegans, we describe the central role of the Wnt/Frizzled pathway in the regulation of asymmetric cell division orientation, focusing on its cooperation with either the Src kinase pathway or the heterotrimeric G protein pathway. Secondly, we describe our present understanding of the mechanisms by which the planar cell polarity pathways drive tissue morphogenesis by regulating the orientation of symmetric cell division within a field of cells. Finally, we will discuss the important avenues that need to be explored in the future to better understand how planar cell polarity pathways control embryo body plan determination, cell fate specification or tissue morphogenesis by mitotic spindle orientation.  相似文献   

18.
The ultrastructure of embryo cells of the loach (Misgurnus fossilis L.) at the stage of first division of blastomers in control and under the conditions of fluoroquinole borocin treatment has been investigated. The influence of this antibiotic at concentrations 5 and 25 mkg/ml has resulted in significant ultrastructural changes of embryo cells, such as hypertrophy of channels of the smoth and rough endoplasmic reticulum, disorganization of Golgy complex and mitochondrias, destruction of cytoplasm and mitochondrial membranes, rarefaction of cytoplasm and cell oedema. Such changes confirm the toxic influence of borocin on the embryo during early development.  相似文献   

19.
J F Garcia 《Theriogenology》2001,56(9):1393-1399
In the past years, research in embryo technologies is moving to the establishment of preimplantation genetic typing or also denominated preimplantation genetic diagnosis (PGD). The objectives of these tests are the prevention of genetic diseases transmission and the prediction of phenotypic characteristics, as well as sex determination, genetic disorders and productive and reproductive profiles, prior to the embryo transfer or freezing, during early stages of development. This paper points out the state-of-the-art of PGD, mainly in cattle and discuss the perspectives of multiloci genetic analysis of embryos.  相似文献   

20.
In plants, genetic mechanisms leading to shoot and root formation are almost unknown. Because basic body organization of such organisms is established during embryogenesis, induction and isolation of embryonic mutants is a promising approach to the study of plant development. The study of available embryonic mutants of rice indicates the existence of three major developmental processes taking place during embryogenesis before morphogenetic events start: determination of organ differentiation, positional regulation of organs and size regulation of the embryo. The consideration of specific rice mutants supports the existence of two types of mutations in each regulatory process, one affecting the embryo as a whole and the second concerning more restricted embryonal regions. A hierarchical type of control of rice embryogenesis is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号