首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of aminoguanidine (AG) on nephrotoxicity induced by cisplatin (CDDP) was investigated. A single dose of CDDP (7.5 mg/kg i.p.) induced nephrotoxicity, manifested biochemically by a significant elevation in serum urea, creatinine and a severe decrease in serum albumin. Moreover, marked increases in kidney weight, urine volume and urinary excretion of albumin were observed. Nephrotoxicity was further confirmed by a significant decrease in glutathione-S-transferase (GST, E.C. 2.5.1.18), glutathione peroxidase (GSH-Px, E.C. 1.11.1.9) and catalase (E.C. 1.11.1.6) and a significant increase in lipid peroxides measured as malondialdhyde (MDA) in kidney homogenates. Administration of AG (100 mg/kg per day p.o.) in drinking water 5 days before and 5 days after CDDP injection produced a significant protection against nephrotoxicity induced by CDDP. The amelioration of nephrotoxicity was evidenced by significant reductions in serum urea and creatinine concentrations. In addition, AG tended to normalize decreased levels of serum albumin. Urine volume, urinary excretions of albumin and GST and kidney weight were significantly decreased. Moreover, AG prevented the rise of MDA and the reduction of GST and GSH-Px activities in the kidney. These results suggest that AG has a protective effect on nephrotoxicity induced by CDDP and it may therefore improve the therapeutic index of CDDP.  相似文献   

2.
The effects of Nomega-nitro-L-arginine methylester (L-NAME) and L-arginine on cardiotoxicity that is induced by doxorubicin (Dox) were investigated. A single dose of Dox 15 mg/kg i.p. induced cardiotoxicity, manifested biochemically by a significant elevation of serum creatine phosphokinase (CPK) activity [EC 2.7.3.2]. Moreover, cardiotoxicity was further confirmed by a significant increase in lipid peroxides, measured as malon-di-aldehyde (MDA) in cardiac tissue homogenates. The administration of L-NAME 4 mg/kg/d p.o. in drinking water 5 days before and 3 days after the Dox injection significantly ameliorated the cardiotoxic effects of Dox, judged by the improvement in both serum CPK activity and lipid peroxides in the cardiac tissue homogenates. On the other hand, the administration of L-arginine 70 mg/kg/d p.o. did not protect the cardiac tissues against the toxicity that was induced by the Dox treatment. The findings of this study suggest that L-NAME can attenuate the cardiac dysfunction that is produced by the Dox treatment via the mechanism(s), which may involve the inhibition of the nitric oxide (NO) formation. L-NAME may, therefore, be a beneficial remedy for cardiotoxicity that is induced by Dox and can then be used to improve the therapeutic index of Dox.  相似文献   

3.
Rhabdomyolysis-induced myoglobinuric acute renal failure accounts for about 10-40% of all cases of acute renal failure (ARF). Nitric oxide and reactive oxygen intermediates play a crucial role in the pathogenesis of myoglobinuric acute renal failure (ARF). This study was designed to investigate the effect of molsidomine and L-arginine in glycerol induced ARF in rats. Six groups of rats were employed in this study, group I served as control, group II was given 50% glycerol (8 ml/kg, intramuscularly), groups III and IV were given glycerol plus molsidomine (5 mg/kg, and 10 mg/kg p.o. route respectively) 60 min prior to the glycerol injection, group V animals were given glycerol plus L-arginine (125 mg/kg, p.o.) 60 min prior to the glycerol injection, and group VI received L-NAME (10 mg/kg, i.p.) along with glycerol 30 min prior to glycerol administration. Renal injury was assessed by measuring plasma creatinine, blood urea nitrogen, creatinine and urea clearance. The oxidative stress was measured by renal malondialdehyde levels, reduced glutathione levels and by enzymatic activity of catalase, reduced glutathione and superoxide dismutase. Tissue and urine nitrite levels were measured as an index of total nitric oxide levels. Glycerol treatment resulted in a marked decrease in tissue and urine nitric oxide levels, renal oxidative stress and significantly deranged the renal functions along with deterioration of renal morphology. Pre-treatment of animals with molsidomine (10 mg/kg) and L-arginine 60 min prior to glycerol injection markedly attenuated fall in nitric oxide levels, renal dysfunction, morphological alterations, reduced elevated TBARS and restored the depleted renal antioxidant enzymes. The animals treated with L-NAME along with glycerol further worsened the renal damage observed with glycerol. As a result, our results indicate that molsidomine and L-arginine may have beneficial effects in myoglobinuric ARF.  相似文献   

4.
Cisplatin (CDDP), an anticancer drug, induces remarkable toxicity in the kidneys of animals and humans and it has been well documented that reactive oxygen species and the renal antioxidant system are strongly involved in acute renal damage induced by CDDP. The aim of the present study was to investigate whether or not the renal antioxidant system plays also an important role in chronic renal damage induced by repeated doses of CDDP (1 mg/kg intraperitoneally twice weekly during 10 weeks in rats). In order to elucidate it, serum creatinine and urea levels, renal glutathione and thiobarbituric acid-reactive substances (TBARS) content, as well as renal superoxide dismutase and glutathione peroxidase activities were measured in the kidney homogenates of chronically CDDP-treated rats and additionally histological studies were performed in the rat kidneys. The chronic treatment with CDDP induced a significant increase in creatinine and urea levels in serum, but the other parameters mentioned above were not significantly modified as compared to the values in nontreated rats. Taking into account these results, we conclude that chronic CDDP administration induces also severe nephrotoxicity, in contrast to CDDP acute application, without any significant modification in the activity of relevant antioxidant enzymes such as superoxide dismutase and glutathione peroxidase, renal glutathione and lipid peroxides, by which the role of the antioxidant system in chronic nephrotoxicity induced by CDDP in rats is uncertain.  相似文献   

5.
IntroductionWe previously reported that the concomitant use of enalapril and telmisartan exacerbates the risk of cisplatin (CDDP)-induced acute renal dysfunction compared to other antihypertensive drugs in mice. Thus, in the current study, we investigated the risk of developing chronic kidney disease following repeated concomitant use of CDDP and antihypertensive drugs.Materials and MethodsMale BALB/c mice were divided into 12 groups: (1) Control group (untreated), (2) CDDP group (7 mg/kg, CDDP), (3) AML group (5 mg/kg, amlodipine), (4) ENA group (2.5 mg/kg, enalapril), (5) TEL group (10 mg/kg, telmisartan), (6) LOS group (10 mg/kg, losartan), (7) CDDP+AML group (5 mg/mL, AML), (8) CDDP+ENA group (2.5 mg/kg, ENA), (9) CDDP+LowENA group (1.25 mg/kg, ENA), (10) CDDP+TEL group (10 mg/kg, TEL), (11) CDDP+LowTEL group (5 mg/kg, TEL), and (12) CDDP+LOS group (10 mg/kg, LOS). CDDP was administered intraperitoneally four times every 7 days, and each antihypertensive drug was administered orally from day 3 before CDDP administration until day 24 (six times a week). The degree of renal damage was assessed. The nephrotoxicity of each individual was evaluated by measuring serum creatinine and blood urea nitrogen levels. The degrees of renal fibrosis and epithelial-mesenchymal transition were also examined in kidney tissue sections.Results and DiscussionThe results suggest that combinatorial treatment of CDDP and renin-angiotensin system inhibitors, particularly ENA and TEL, may exacerbate CDDP-induced nephrotoxicity. This study clearly demonstrates the need for large-scale clinical studies to construct treatment regimens that do not interfere with the therapeutic intensity of CDDP.  相似文献   

6.
This study analyzed the effects of L-arginine and non-specific nitric oxide (NO) synthase blocker (L-NAME) on structural and metabolic changes in experimental ischemia/reperfusion injury in the rat. Histopathological evaluation of rat tissues after reperfusion was also performed. The animals were divided into four groups: [1] nonischemic control, [2] ischemia 4 hrs/repefusion 30, 60, 120 min, [3] ischemia/reperfusion after L-arginine administration, [4] ischemia/reperfusion, after L-arginine, and L-NAME. L-arginine (500 mg/kg) and L-NAME (75 micromol/rat/day) were administrated orally for 5 days before experiment. Concentrations of free radicals, CD-62P, CD-54 and malonyl dialdehyde (MDA) in tissues, and MDA and NO levels in sera were determined. Free radical levels significantly increased in reperfused skeletal muscle, small and large intestines. In large bowel, reperfusion increased MDA levels and evoked a rise of endotoxin level while NO levels decreased. Histological studies showed an increase in the number of lymphocytes in both intestines. Administration of L-arginine reduced leukocyte adherence associated with ischemia-repefusion injury, decreased the levels of free radicals and MDA in the examined tissues, and inhibited the release of endotoxins into blood. L-arginine-treated animals showed higher serum NO levels and reduced leukocyte bowel infiltration. Concomitant L-NAME administration reduced serum NO and tissue free radical [corrected] levels, but did not affect intestinal leukocyte infiltration. L-arginine could ameliorate intestinal ischemia/reperfusion injury and constitute a possible protective mechanism by decreasing neutrophil-endothelial interactions, stimulating free radical scavenging and reducing lipid peroxidation.  相似文献   

7.
Ischemia-reperfusion (I/R) injury induces an inflammatory response and production of oxygen-derived reactive species which affect many organs including heart, brain, kidney and gastrointestinal tract. The aim of this study was to assess the hepatic changes after renal I/R injury. Male Sprague Dawley rats were subjected to either sham operation or treatment with L-NAME, L-arginine and BQ-123 during 30 min renal ischemia and 2 h reperfusion injury. Hepatic superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) activities, and thiobarbituric acid-reactive substances (TBARS) and nitric oxide (NO) levels were evaluated to show hepatic response to renal I/R injury. Catalase and SOD activities showed significant differences between the control and the other groups after I/R. On the other hand, GSH-Px activity did not show any significant changes between the control and the other experimental groups mentioned under above conditions. Meanwhile, levels of TBARS were not different between the control and the other experimental groups, whereas NO level showed changes between the control and experimental groups except the one to which endothelin receptor antagonist agent (BQ-123) subjected. Experimental period may not be enough to determine the changes in GSH-Px activity and level of TBARS. However, catalase and SOD activities decreased in experimental groups treated by chemical agents. NO level decreased in chemicalagent-applied experimental groups but not in the group to which endothelin receptor antagonist BQ-123 was applied alone.  相似文献   

8.
目的:探讨达格列净对2型糖尿病大鼠肾脏葡萄糖转运蛋白2(GLUT2)和葡萄糖转运蛋白4(GLUT4)基因表达的影响。方法:使用高脂饲料和一次性注射40 mg/kg链脲佐菌素(STZ)建立2型糖尿病大鼠模型,造模大鼠以空腹血糖(FBG)含量≥16.7 mmol/L时视为造模成功。造模成功后随机分为模型组(B组,生理盐水)、达格列净低剂量组(C组,0.75 mg/kg)、达格列净中剂量组(D组,1.5 mg/kg)、达格列净高剂量组(E组,3.0 mg/kg),每组6只;另选取6只健康的SD大鼠作为正常对照组(A组,生理盐水)。各组均为灌胃给药,每天1次,连续7周。灌胃给药7周后测定大鼠的体重以及血清FBG、糖化血红蛋白(Hb A1c)、血尿素氮(BUN)、血肌酐(Scr)的变化;采用酶联免疫吸附测定血清及肾组织丙二醛(MDA)、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px);采用HE观察肾脏病理学变化;采用Western blot检测肾脏组织中GLUT2、GLUT4蛋白表达; RT-qPCR检测肾脏组织中GLUT2、GLUT4 mRNA相对表达量。结果:与A组比较,各组大鼠...  相似文献   

9.
The purpose of this study was to investigate the role of the L-arginine/nitric oxide (NO)/cGMP pathway in p-benzoquinone-induced writhing model in mouse. L-arginine, a NO precursor, displayed antinociceptive effects at the doses of 0.125-1.0 mg/kg. When the doses of L-arginine were increased gradually to 10-100 mg/kg, a dose-dependent triphasic pattern of nociception-antinociception-nociception was obtained. The NO synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) (18.7515 mg/kg), possessed antinociceptive activity. Methylene blue (MB), a guanylyl cyclase and/or NOS inhibitor, (5-160 mg/kg) also produced a dose-dependent triphasic response. When L-arginine (50 mg/ kg) was combined with L-NAME (75 mg/kg). L-arginine-induced antinociception did not change significantly. Cotreatment of L-arginine with 5 mg/kg MB significantly decreased MB-induced antinociception and reversed the nociception induced by 40 mg/kg MB to antinociception. It is concluded that the components of L-arginine/nitric oxide/cGMP cascade may participate in nociceptive processes both peripherally and centrally by a direct effect on nociceptors or by the involvement of other related pathways of nociceptive processes induced by NO.  相似文献   

10.
The present investigation reports the effect of rosmarinic acid (RA), an antioxidant on gentamicin sulphate (GS)-induced renal oxidative damage in rats. Rosmarinic acid (RA) has been demonstrated to have antioxidant, free radical scavenger and anti-inflamatory effects. Twenty-eight Sprague-Dawley rats were divided in to four equal groups as follows: group 1 (control), group 2 (GS 100 mg/kg/d ip), group 3 (GS 100 mg/kg/d ip + RA 50 mg/kg/d) and group 4 (GS 100 mg/kg/d ip + RA 100 mg/kg/d). Treatments were administrated once daily for 12 days. After 12 days 24 h urine was collected, blood was sampled and kidneys were removed. Serum and kidney tissue MDA assessed by thiobarbituric acid. Kidney paraffin sections (5 μm thickness) from the left kidney stained with periodic acid Schiff. Tubular necrosis was studied semiquantitatively and glomerular volume and volume density of proximal convoluted tubule (PCT) estimated stereologically. Kidney homogenize were prepared from right kidney. Serum creatinine, urea and kidney antioxidant enzymes activity were assessed by special kits. Data were compared by SPSS 13 software and Mann–Whitney test at p < 0.05. Co treatment of GS and RA (High dose) significantly decreased serum creatinine, MDA, urea, tubular necrosis (p < 0.05) and increase renal GSH, GPX, CAT, SOD, volume density of PCT and creatinine clearance significantly in comparison with GS group (p < 0.05). Treatment with RA (high dose) maintained serum creatinine, volume density of PCT, renal GSH, GPX, SOD and MDA as the same level as control group significantly (p < 0.05). In conclusion, RA alleviates GS nephrotoxicity via antioxidant activity, increase of renal GSH content and increase of renal antioxidant enzymes activity.  相似文献   

11.
《Journal of Physiology》1997,91(3-5):139-149
We describe the effects of nitric oxide (NO) agonists and antagonists and the influence of a novel organoprotective pentadecapeptide BPC 157, on the development of pulmonary hypertension syndrome and tissue lesions in chicks. Acute toxicity, which includes single dose application of saline (1 mL intraperitoneally (ip)), BPC 157 (10 μg/kg bw), L-NAME (NO antagonist, doses 50, 100, 150 mg/kg bw) and L-arginine (NO agonist/100 mg/kg bw with their combination L-NAME + BPC 157; L-NAME + L-arginine) was investigated. In this experiment pathohistological examination of the spleen, heart, liver and lungs and hematological analysis was conducted. In the chronic toxicity experiment, the animals were treated daily for 5 weeks with L-NAME (10 mg/kg bw), L-arginine (100 mg/kg bw), BPC 157 (10 μg/kg bw) and their combinations (L-NAME + BPC 157; L-NAME + L-arginine) ip. Seven animals from each group, including controls (saline 1 mL ip) were killed every week. Application of L-NAME caused pulmonary hypertension syndrome (PHS) in the treated chicks, which was prevented by the simultaneous application of L-arginine and BPC 157. Pathohistological examination of both acute and chronic toxicity revealed that L-NAME caused severe tissue damage (myocardial and hepatic cell necrosis, necrosis of the lymphoid cells in the spleen) while L-arginine provoked predominantly congestion, edema and hemorrhages in all organs. The effect of L-NAME was successfully inhibited by the application of L-arginine and BPC 157 but the latter substance did not cause any tissue or organ damage. Hematological analysis shows significant hemoglobin and leukocyte number decrease in the L-NAME-treated groups of chicks.  相似文献   

12.
We have studied the effects of red wine on brain oxidative stress and nephropathy in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats with a single intraperitonally injection of STZ (50 mg/kg). Two weeks before and four weeks after injection, red wine was given orally in both normal and diabetic rats. Blood samples were taken from the neck vascular trunk in order to determine the glucose, triglycerides, total cholesterol, HDL-cholesterol (HDL-c), atherogenic index (AI), total protein, blood urea nitrogen (BUN), creatinine, insulin, lipid peroxidation products, reduced glutathione (GSH) and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. As well, we estimated the lipid peroxidtion, GSH and SOD, GSH-Px and catalase activities in brain and renal homogenates, and the excretion of albumin, proteins and glucose in urine over 24 h period. The administration of STZ caused significant increases in levels of glycosuria, proteinuria, albuminuria, glycemia, total cholesterol and AI, as well as in lipid peroxidation products in the brain, plasma and kidney, whereas it decreased the GSH content and SOD, GSH-Px and catalase activities. Treatment with red wine significantly prevented the changes induced by STZ. These data suggested that red wine has a protective effect against brain oxidative stress, diabetic nephropathy and diabetes induced by STZ, as well as it protects against hypercholesterolemia and atherogenic risk.  相似文献   

13.
Cisplatin (CDDP) is a widely used anticancer drug, but at high dose, it can produce undesirable side effects such as hepatotoxicity. Because silymrin has been used to treat liver disorders, the protective effect of silymarin on CDDP-induced hepatotoxicity was evaluated in rats. Hepatotoxicity was determined by changes in serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST], nitric oxide [NO] levels, albumin and calcium levels, and superoxide dismutase [SOD], glutathione peroxidase [GSHPx] activities, glutathione content, malondialdehyde [MDA] and nitric oxide [NO] levels in liver tissue of rats. Male albino rats were divided into four groups, 10 rats in each. In the control group, rats were injected i.p. with 0.2 ml of propylene glycol in saline 75/25 (v/v) for 5 consecutive days [Silymarin was dissolved in 0.2 ml of propylene glycol in saline 75/25 v/v]. The second group were injected with CDDP (7.5 mg /kg, I.P.), whereas animals in the third group were i.p. injected with silymarin at a dose of 100 mg/kg/day for 5 consecutive days. The Fourth group received a daily i.p. injection of silymarin (100 mg/kg/day for 5 days) 1 hr before a single i.p. injection of CDDP (7.5 mg/kg). CDDP hepatotoxicity was manifested biochemically by an increase in serum ALT and AST, elevation of MDA and NO in liver tissues as well as a decrease in GSH and the activities of antioxidant enzymes, including SOD, GSHPx in liver tissues. In addition, marked decrease in serum NO, albumin and calcium levels were observed. Serum ALT, AST, liver NO level, MDA was found to decreased in the combination group in comparison with the CDDP group. The activities of SOD, GSHPx, GSH and serum NO were lower in CDDP group than both the control and CDDP pretreated with silymarin groups. The results obtained suggested that silymarin significantly attenuated the hepatotoxicity as an indirect target of CDDP in an animal model of CDDP-induced nephrotoxicity.  相似文献   

14.
To determine the renal effects of cadmium (Cd) in older animals, we administered subcutaneously a single dose of cadmium, 3.0 mg/kg/BW, to Syrian hamsters aged 16 wk (“young”) and 60 wk (“old”). Marked morphologic changes in the kidney and renal dysfunction were observed, especially in the older animals. The concentration of MDA in the renal cortex was significantly increased only in young hamsters treated with cadmium. Concentrations of glutathione (GSH) in the renal cortex were increased in the old hamsters on d 6. Increased levels of renal MDA after cadmium treatment may induce the production of GSH in the kidney thus preventing renal damage. Aging can increase the susceptibility to the renal effects of cadmium.  相似文献   

15.
目的研究普罗布考(Probucol)对糖尿病大鼠肾组织氧化应激的影响。方法采用腹腔注射链脲佐菌素(STZ)建立糖尿病大鼠模型。30只Wistar大鼠分为正常对照组(NC)、糖尿病组(DM)、糖尿病普罗布考治疗组(DP)。8周末称取体重、肾重、计算肾肥大指数(肾重/体重),检测尿白蛋白排泄率(UAER);测定各组生化指标包括血糖(BG)、胆固醇(TC)、三酰甘油(TG)、血清肌酐(SCr)、血尿素氮(BUN);检测肾组织中丙二醛(MDA)的含量及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)与谷胱甘肽过氧化物酶(GSH-Px)活性;肾组织切片行PAS染色分析肾小球面积及肾小球体积。结果 DM组大鼠肾重、肾重/体重、UAER、TC、TG、SCr、BUN、肾小球面积、肾小球体积较NC组均明显增加,DP组上述改变较DM组均明显减轻(P〈0.05)。DP组肾组织中MDA含量明显低于DM组,SOD、CAT、GSH-Px活性明显高于DM组(P〈0.05)。结论普罗布考可能部分通过减轻肾组织氧化应激反应实现对糖尿病大鼠肾脏的保护作用。  相似文献   

16.
The L-arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is known to be involved in central and peripheral nociceptive processes. This study evaluated the rhythmic pattern of the L-arginine/NO/cGMP pathway using the mouse visceral pain model. Experiments were performed at six different times (1, 5, 9, 13, 17, and 21 h after light on) per day in male mice synchronized to a 12 h:12 h light-dark cycle. Animals were injected s.c. with saline, 2 mg/kg L-arginine (a NO precursor), 75 mg/kg L-N(G)-nitroarginine methyl ester (L-NAME, a NOS inhibitor), 40 mg/kg methylene blue (a soluble guanylyl cyclase and/or NOS inhibitor), or 0.1 mg/kg sodium nitroprusside (a nonenzymatic NO donor) 15 min before counting 2.5 mg/kg (i.p.) p-benzoquinone (PBQ)-induced abdominal constrictions for 15 min. Blood samples were collected after the test, and the nitrite concentration was determined in serum samples. L-arginine or L-NAME caused both antinociception and nociception, depending on the circadian time of their injection. The analgesic effect of methylene blue or sodium nitroprusside exhibited significant biological time-dependent differences in PBQ-induced abdominal constrictions. Serum nitrite levels also displayed a significant 24 h variation in mice injected with PBQ, L-NAME, methylene blue, or sodium nitroprusside, but not saline or L-arginine. These results suggest that components of L-arginine/NO/cGMP pathway exhibit biological time-dependent effects on visceral nociceptive process.  相似文献   

17.
The purpose of this study was to investigate the renal and hepatic oxidative damage and toxicity caused by dietary high vanadium in broilers. A total of 420 one-day-old avian broilers were divided into six groups and fed on a corn–soybean basal diet as control diet (vanadium 0.073 mg/kg), and five high vanadium diets (vanadium 5 mg/kg, high vanadium group I; 15 mg/kg, high vanadium group II; 30 mg/kg, high vanadium group III; 45 mg/kg, high vanadium group IV; and 60 mg/kg, high vanadium group V) throughout the experimental period of 42 days. The results showed that the renal and hepatic superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, ability to inhibit hydroxy radical, and malondialdehyde (MDA), glutathione, and vanadium contents were not significantly changed in high vanadium group I and II when compared with those of the control groups. However, the SOD and GSH-Px activities, ability to inhibit hydroxy radical, and GSH content were significantly decreased, and the MDA and vanadium contents were markedly increased in high vanadium groups III, IV, and V. At the same time, the lesions were also observed in the kidney and liver of high vanadium groups III, IV, and V. The renal tubular epithelial cells showed granular degeneration and vacuolar degeneration, and hepatocytes showed granular degeneration, vacuolar degeneration, and fatty degeneration. It was concluded that dietary vanadium in the range of 30–60 mg/kg could cause oxidative damage and vanadium accumulation, which induced renal and hepatic toxicity and lesions. The renal and hepatic function was finally impaired in boilers.  相似文献   

18.
Cisplatin (CDDP) is one of the first-line anticancer drugs; however, the major limitation of CDDP therapy is development of nephrotoxicity (25–35% cases), whose precise mechanism mainly involves oxidative stress, inflammation and cell death. Therefore, in search of a potential chemoprotectant, an organovanadium complex, viz., vanadium(III)-L-cysteine (VC-III) was evaluated against CDDP-induced nephropathy in mice. CDDP was administered intraperitoneally (5?mg/kg b.w.) and VC-III was given by oral gavage (1?mg/kg b.w.) in concomitant and pre-treatment schedule. The results showed that VC-III administration reduced (p?<?0.001) serum creatinine and blood urea nitrogen levels, suggesting amelioration of renal dysfunction. VC-III treatment also significantly (p?<?0.001) prevented CDDP-induced generation of reactive oxygen species, reactive nitrogen species, and onset of lipid peroxidation in kidney tissues of the experimental mice. In addition, VC-III also substantially (p?<?0.001) restored CDDP-induced depleted activities of the renal antioxidant enzymes such as, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, and glutathione (reduced) level. Furthermore, histopathological study also confirmed the renoprotective efficacy of VC-III. Western blotting analysis appended by immunohistochemical data showed that VC-III treatment quite effectively reduced the expression of proinflammatory mediators such as, NFκβ, COX-2 and IL-6. VC-III administration also stimulated Nrf2-mediated antioxidant defense system by promotion of downstream antioxidant enzymes, such as HO-1. Moreover, treatment with VC-III significantly (p?<?0.001) enhanced CDDP-mediated cytotoxicity in MCF-7 and NCI-H520 human cancer cell lines. Thus, VC-III can serve as a suitable chemoprotectant and increase the therapeutic window of CDDP in cancer patients.  相似文献   

19.
The aim of this study was to investigate the effects of vitamin E (alpha-tocopherol) and 17β-estradiol (E(2)) supplementation on malondialdehyde (MDA), glutathione (GSH), vitamin A, beta carotene, selenium-dependent glutathione peroxidase (GSH-Px), zinc-dependent superoxide dismutase (SOD), and copper/zinc-dependent catalase (CAT) values in the kidney of ovariectomized (OVX) diabetic rats. Forty-two female rats were randomly divided into seven equal groups as follows: group I, control; group II, OVX; group III, OVX+E(2); group IV, OVX+E(2)+alpha-tocopherol; group V, OVX+diabetic; group VI, OVX+diabetic+E(2); and group VII, OVX+diabetic+E(2)+alpha-tocopherol. E(2) (40?μg?kg(-1)/day) and alpha-tocopherol (100?μg?kg(-1)/day) were given. Bilateral ovariectomy was performed in all groups except group I. After 4?weeks, antioxidant and MDA levels in the kidney for all groups were analyzed. GSH-Px, CAT, SOD, GSH levels, vitamin A, and beta carotene levels were decreased in OVX group compared to those in the control group but MDA level was elevated via ovariectomy. However, E(2) and E(2)+alpha-tocopherol supplementations in OVX group was associated with an increase in the GSH-Px, GSH, CAT and Zn-SOD values, vitamin A, and beta carotene levels but a decrease in MDA levels in kidney. The MDA levels in the kidney of diabetic OVX rats were found higher than those in the control and OVX groups. However, GSH, GSH-Px, CAT, SOD, vitamin A, and beta carotene levels in kidney were lower in OVX diabetic rats. On the other hand, E(2) and E(2)+alpha-tocopherol supplementations to OVX diabetic rats have caused an increase in GSH-Px, CAT and SOD, GSH, vitamin A, and beta carotene levels but a decrease in MDA levels. In conclusion, the E(2) and E(2)+alpha-tocopherol supplementations to diabetic OVX and OVX rats may strengthen the antioxidant defense system by reducing lipid peroxidation, and therefore they may play a role in preventing renal disorders.  相似文献   

20.
Immunophilins are abundantly present in the brain as compared to the immune system. Immunophilin-binding agents like FK506 are known to inactivate neuronal nitric oxide synthase (nNOS) by inhibiting calcineurin and decrease the production of nitric oxide. Nitric oxide is involved in the mediation of nociception at the spinal level. In the present study, the effect of FK506 on the tail flick response in mice and the possible involvement of NO-L-arginine pathway in this paradigm was evaluated. FK506 (0.5, 1 and 3 mg/kg, ip) produced a significant antinociception in the tail flick test. Nitric oxide synthase (NOS) inhibitor L-NAME significantly and dose dependently (10-40 mg/kg, ip) potentiated the FK506 (0.5 mg/kg)-induced antinociception. On the other hand, NOS substrate L-arginine (100, 200 and 400 mg/kg) inhibited the FK506-induced antinociception in a dose-dependent manner. Concomitant administration of L-NAME (20 and 40 mg/kg) with L-arginine (200 mg/kg) blocked the inhibition exerted by L-arginine on the FK506-induced antinociception. Thus, it was concluded that NO- L-arginine pathway may be involved in the FK506-induced antinociception in tail flick test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号