首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Although most eukaryotic cells are sensitive to the 80S ribosome inhibitor cycloheximide (CYH), naturally occurring CYH resistance is widespread amongst yeast species. The primary determinant of resistance appears to be a single residue within ribosomal protein L41; resistance is acquired by the substitution of a conserved proline (P56) by a glutamate residue. We have isolated the L41 gene (RPL41) from the green alga Chlamydomonas reinhardtii, and investigated the molecular basis of CYH resistance in various mutant strains. In both the wild-type strain and the mutant act-1, a proline is found at the key position in L41. However, analysis of six independently isolated act-2 mutants reveals that all have point mutations that replace the proline with either leucine or serine. Of the two changes, the leucine mutation confers significantly higher levels of CYH resistance. This work identifies the ACT-2 locus as RPL41 and provides a possible dominant marker for nuclear transformation of C. reinhardtii.  相似文献   

2.
X Wu  K Tatchell 《Biochemistry》2001,40(25):7410-7420
Protein phosphatase type 1 (PP1) is a major Ser/Thr protein phosphatase that is involved in many cellular processes. The activity of PP1 is controlled by regulatory subunits, many of which are thought to bind to a hydrophobic groove in PP1 via a short consensus sequence termed the V/IXF motif. To test this hypothesis, 11 variants of yeast PP1 (Glc7) were constructed in which one or more of the residues comprising the groove were changed to alanine. These variants were tested for their biological activity in vivo, for their biochemical activity in vitro, and for their ability to associate with three PP1 binding proteins. Five variants are unable to complement the essential function of PP1 in vivo although they are catalytically active in vitro. Many of the mutants are deficient in binding two V/IXF-containing subunits, Gac1 and Reg1, which regulate glycogen accumulation and glucose repression, respectively, but all retain the ability to associate with Sds22, a regulatory subunit that lacks this motif. The subcellular locations at which PP1 normally accumulates (bud neck, nucleolus, spindle pole body) were not occupied by one PP1 variant. Additionally, we provide evidence that mutations in the hydrophobic groove of PP1 affect substrate specificity. Together, these results demonstrate the importance of the hydrophobic groove for the interaction with regulatory subunits, for the proper subcellular localization of PP1 and for the substrate specificity of PP1.  相似文献   

3.
We have recently reported that ribosomal protein L5 associates with the beta subunit of protein kinase CKII (CKII) (Kim, J.-M., Cha, J. -Y., Marshak, D. R., and Bae, Y.-S. (1996) Biochem. Biophys. Res. Commun. 226, 180-186). In this study, we demonstrate that CKII is able to catalyze the phosphorylation of the human L5 protein in vitro, which results in a decrease in 5S rRNA binding activity. Phosphoamino acid analysis indicated that the phosphorylation occurs on serine residues. Sequence analysis of cyanogen bromide-digested phosphopeptides and analysis of L5 deletion mutants indicates that the main phosphorylated residues are located within two fragments corresponding of residues 142-200 and residues 272-297 of the human L5. Based on our present results, we suggest that the phosphorylation of L5 by CKII is one of the mechanisms that regulates nucleolar targeting of 5S rRNA and/or ribosome assembly in the cell.  相似文献   

4.
Domain III of Saccharomyces cerevisiae 25 S rRNA contains the recognition site for the primary rRNA-binding ribosomal protein L25, which belongs to the functionally conserved EL23/L25 family of ribosomal proteins. The EL23/L25 binding region is very complex, consisting of several irregular helices held together by long-distance secondary and tertiary interactions. Moreover, it contains the eukaryote-specific V9 (D7a) expansion segment. Functional characterisation of the structural elements of this site by a detailed in vitro and in vivo mutational analysis indicates the presence of two separate regions that are directly involved in L25 binding. In particular, mutation of either of two conserved nucleotides in the loop of helix 49 significantly reduces in vitro L25 binding, thus strongly supporting their role as attachment sites for the r-protein. Two other helices appear to be primarily required for the correct folding of the binding site. Mutations that abolish in vitro binding of L25 block accumulation of 25 S rRNA in vivo because they stall pre-rRNA processing at the level of its immediate precursor, the 27 S(B) pre-rRNA. Surprisingly, several mutations that do not significantly affect L25 binding in vitro cause the same lethal defect in 27 S(B) pre-rRNA processing. Deletion of the V9 expansion segment also leads to under-accumulation of mature 25 S rRNA and a twofold reduction in growth rate. We conclude that an intact domain III, including the V9 expansion segment, is essential for normal processing and assembly of 25 S rRNA.  相似文献   

5.
6.
Summary Mutants were analyzed biochemically and genetically in which restriction of translational misreading by ribosomes containing an altered L6 protein is relieved. Amongst 100 such strains eight possessed an altered S4 and two a mutant S5 protein. The protein-chemical type of L6 mutation seems to influence the kind of S4 mutant form selected. Also, only a few types of S4 ram mutations are obtained and they are different from those usually found amongst suppressors of streptomycin-dependent (SmD) strains. The S4 mutations selected are able to reduce the level of streptomycin-resistance of strA1 or strA40 strains and they confer extreme hypersensitivity to aminoglycosides when present alone. On the other hand, S4 mutations from SmD suppressor strains only weakly reverse L6 restriction. The results imply that control of translational fidelity is an intersubunit function and that protein L6 (an interface protein) cooperates with 30S proteins by directly or indirectly determining parameters involved in aminoacyl-tRNA recognition.  相似文献   

7.
We have delineated the region of yeast ribosomal protein L25 responsible for its specific binding to 26 S rRNA by a novel approach using in vitro synthesized, [35S]methionine-labeled fragments as well as point mutants of the L25 protein. The rRNA binding capacity of these mutant polypeptides was tested by incubation with an in vitro transcribed, biotinylated fragment of yeast 26 S rRNA that contains the complete L25 binding site. Protein-rRNA interaction was assayed by binding of the rRNA-r-protein complex to streptavidin-agarose followed either by analysis of the bound polypeptide by SDS/polyacrylamide gel electrophoresis or by precipitation with trichloroacetic acid. Our results show that the structural elements necessary and sufficient for specific interaction of L25 with 26 S rRNA are contained in the region bordered by amino acids 62 and 126. The remaining parts of the protein, in particular the C-terminal 16 residues, while not essential for binding, do enhance its affinity for 26 S rRNA. To test whether, as suggested by the results of the deletion experiments, the evolutionarily conserved sequence motif K120KAYVRL126 is involved in rRNA binding, we replaced the leucine residue at position 126 by either isoleucine or lysine. The first substitution did not affect binding. The second, however, completely abolished the specific rRNA binding capacity of the protein. Thus, Leu126, and possibly the whole conserved sequence motif, plays a key role in binding of L25 to 26 S rRNA.  相似文献   

8.
The fluorescence of Trp-226 in the regulatory subunit of bovine type II cAMP-dependent protein kinase is unaffected by the binding of cAMP, but is quenched by the binding of 2'-dansyl-cAMP (DNS-cAMP). Up to 67% of the fluorescence of Trp-226 can be quenched by resonant energy transfer to the DNS-cAMP bound to the first site, and 96% of the fluorescence can be quenched by saturating both sites with DNS-cAMP. The observed efficiencies of energy transfer gave a distance of 16 A between Trp-226 and the DNS-cAMP bound at the first site and a distance of 12.7 A between Trp-226 and the DNS-cAMP bound at second site. The fluorescence of Trp-226 was suppressed by incubation of RII with the self-complementary octanucleotide TGACGTCA (CRE) due to binding of the oligonucleotide to RII. A detailed study of the binding equilibrium showed that each RII(cAMP)2 molecule binds 1 molecule of CRE with Kd = 80 nM. The corresponding Kd value for cAMP-depleted RII was found to be 25-fold higher. RII was also found to bind randomly selected DNA fragments with an average Kd value much higher than that of CRE. These observations show for the first time that the binding of oligonucleotide to RII is cAMP-enhanced and sequence-selective.  相似文献   

9.
10.
Ribosomal protein SA (rpSA), or p40, is a structural element of the small subunit of the eukaryotic ribosome. The N-terminal and central parts of rpSA are homologous to prokaryotic S2, whereas its C-terminal part is specific to eukaryotes. Preparations of 40S ribosomal subunits isolated from full-term human placenta proved to be deficient in SA to a varying extent. To study the rpSA binding to human 40S subunits, recombinant rpSA and its mutant forms with N-and C-terminal deletions were synthesized. The full-size and N-truncated rpSA variants bound to 40S subunits, while deletion of the C-terminal domain completely abolished the binding.  相似文献   

11.
The 25 kDa mRNA cap binding protein can be purified in a partially phosphorylated state and the extent of its phosphorylation appears to be regulated during heat shock and mitosis in mammalian cells. We demonstrated that a nonabundant serine protein kinase activity exists in rabbit reticulocytes that phosphorylates the 25 kDa cap binding protein in both the free (eIF-4E) and complexed (eIF-4F) state. This kinase was not inhibited by the cAMP-dependent protein kinase inhibitory peptide IAAGRTGRRNAIHDILVAA, did not phosphorylate S6 ribosomal protein, did not phosphorylate p220 of eIF-4F as protein kinase C does and no other substrates for this kinase were apparent in reticulocyte ribosomal salt wash. The molecular identity of this kinase, the specific site(s) of eIF-4E that it phosphorylates and its in vivo regulatory role remain to be studied.  相似文献   

12.
13.
Rajamohan F  Ozer Z  Mao C  Uckun FM 《Biochemistry》2001,40(31):9104-9114
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein (RIP) which catalytically cleaves a specific adenine base from the highly conserved alpha-sarcin/ricin loop (SRL) of the large ribosomal RNA and thereby inhibits the protein synthesis. The ribosomal protein L3, a highly conserved protein located at the peptidyltransferase center of the ribosomes, is involved in binding of PAP to ribosomes and subsequent depurination of the SRL. We have recently discovered that recombinant PAP mutants with alanine substitution of the active center cleft residues (69)NN(70) (FLP-4) and (90)FND(92) (FLP-7) that are not directly involved in the catalytic depurination at the active site exhibit >150-fold reduced ribosome inhibitory activity [(2000) J. Biol. Chem. 275, 3382--3390]. We hypothesized that the partially exposed half of the active site cleft could be the potential docking site for the L3 molecule. Our modeling studies presented herein indicated that PAP residues 90--96, 69--70, and 118--120 potentially interact with L3. Therefore, mutations of these residues were predicted to result in destabilization of interactions with rRNA and lead to a lower binding affinity with L3. In the present structure-function relationship study, coimmunoprecipitation assays with an in vitro synthesized yeast ribosomal protein L3 suggested that these mutant PAP proteins poorly interact with L3. The binding affinities of the mutant PAP proteins for ribosomes and recombinant L3 protein were calculated from rate constants and analysis of binding using surface plasmon resonance biosensor technology. Here, we show that, compared to wild-type PAP, FLP-4/(69)AA(70) and FLP-7/(90)AAA(92) exhibit significantly impaired affinity for ribosomes and L3 protein, which may account for their inability to efficiently inactivate ribosomes. By comparison, recombinant PAP mutants with alanine substitutions of residues (28)KD(29) and (111)SR(112) that are distant from the active center cleft showed normal binding affinity to ribosomes and L3 protein. The single amino acid mutants of PAP with alanine substitution of the active center cleft residues N69 (FLP-20), F90 (FLP-21), N91 (FLP-22), or D92 (FLP-23) also showed reduced ribosome binding as well as reduced L3 binding, further confirming the importance of the active center cleft for the PAP--ribosome and PAP--L3 interactions. The experimental findings presented in this report provide unprecedented evidence that the active center cleft of PAP is important for its in vitro binding to ribosomes via the L3 protein.  相似文献   

14.
Limited trypsin digestion of type I cAMP-dependent protein kinase holoenzyme results in a proteolytic-resistant Delta(1-72) regulatory subunit core, indicating that interaction between the regulatory and catalytic subunits extends beyond the autoinhibitory site in the R subunit at the NH(2) terminus. Sequence alignment of the two R subunit isoforms, RI and RII, reveals a significantly sequence diversity at this specific region. To determine whether this sequence diversity is functionally important for interaction with the catalytic subunit, specific mutations, R133A and D328A, are introduced into sites adjacent to the active site cleft in the catalytic subunit. While replacing Arg(133) with Ala decreases binding affinity for RII, interaction between the catalytic subunit and RI is not affected. In contrast, mutant C(D328A) showed a decrease in affinity for binding RI while maintaining similar affinities for RII as compared with the wild-type catalytic subunit. These results suggest that sequence immediately NH(2)-terminal to the consensus inhibition site in RI and RII interacts with different sites at the proximal region of the active site cleft in the catalytic subunit. These isoform-specific differences would dictate a significantly different domain organization in the type I and type II holoenzymes.  相似文献   

15.
16.
In vitro mutagenesis of rplB was used to generate changes in a conserved region of Escherichia coli ribosomal protein L2 between Gly221 and His231. Mutants were selected by temperature sensitivity using an inducible expression system. A mutant L2 protein with the deletion of Thr222 to Asp228 was readily distinguishable from wild-type L2 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and ribosomes from the strain overexpressing this mutant protein were characterized by sucrose density gradient centrifugation and protein composition. In addition to 30 S and 50 S ribosomal subunits, cell lysates contained a new component that sedimented at 40 S in 1 mM Mg2+ and at 48 S in 10 mM Mg2+. These particles contained mutant L2 protein exclusively, completely lacked L16, and had reduced amounts of L28, L33, and L34. They did not reassociate with 30 S ribosomal subunits and were inactive in polyphenylalanine synthesis. Other mutants in the same conserved region, including the substitution of His229 by Gln229, produced similar aberrant 50 S particles that sedimented at 40 S and failed to associate with 30 S subunits.  相似文献   

17.
A mutation in the infA gene encoding initiation factor 1 (IF1) gives rise to a cold-sensitive phenotype. An Escherichia coli strain with this mutation was used as a tool to select for second-site suppressors that compensate for the cold sensitivity and map specifically to rRNA. Several suppressor mutants with altered 16S rRNA that partially restore growth of an IF1 mutant strain in the cold were isolated and characterized. Suppressor mutations were found in helix (h)18, h32, h34 and h41 in 16S rRNA. These mutations are not clustered to any particular region in 16S rRNA and none overlap previously reported sites of interaction with IF1. While the isolated suppressors are structurally diverse, they are functionally related because all affect ribosomal subunit association in vivo. Furthermore, in vitro subunit-association experiments indicate that most of the suppressor mutations directly influence ribosomal subunit association even though none of these are confined to any of the known intersubunit bridges. These results are consistent with the model that IF1 is an rRNA chaperone that induces large-scale conformational changes in the small ribosomal subunit, and as a consequence modulates initiation of translation by affecting subunit association.  相似文献   

18.
Ferredoxins found in animal mitochondria function in electron transfer from NADPH-dependent ferredoxin reductase (Fd-reductase) to cytochrome P450 enzymes. To identify residues involved in binding of human ferredoxin to its electron transfer partners, neutral amino acids were introduced in a highly conserved acidic region (positions 68-86) by site-directed mutagenesis of the cDNA. Mutant ferredoxins were produced in Escherichia coli, and separate assays were used to determine the effect of substitutions on the capacity of each mutant to bind to Fd-reductase and cytochrome P450scc and to participate in the cholesterol side chain cleavage reaction. Replacements at several positions (mutants D68A, E74Q, and D86A) did not significantly affect activity, suggesting that acidic residues at these positions are not required for binding or electron transfer interactions. In contrast, substitutions at positions 76 and 79 (D76N and D79A) caused dramatic decreases in activity and in the affinity of ferredoxin for both Fd-reductase and P450scc; this suggests that the binding sites on ferredoxin for its redox partners overlap. Other substitutions (mutants D72A, D72N, E73A, E73Q, and D79N), however, caused differential effects on binding to Fd-reductase and P450scc, suggesting that the interaction sites are not identical. We propose a model in which Fd-reductase and P450scc share a requirement for ferredoxin residues Asp-76 and Asp-79 but have other determinants that differ and play an important role in binding. This model is consistent with the hypothesis that ferredoxin functions as a mobile shuttle in steroidogenic electron transfer, and it is considered unlikely that a functional ternary complex is formed.  相似文献   

19.
We conducted a genetic screen for mutations in myospheroid, the gene encoding the Drosophila betaPS integrin subunit, and identified point mutants in all of the structural domains of the protein. Surprisingly, we find that mutations in very strongly conserved residues will often allow sufficient integrin function to support the development of adult animals, including mutations in the ADMIDAS site and in a cytoplasmic NPXY motif. Many mutations in the I-like domain reduce integrin expression specifically when betaPS is combined with activating alphaPS2 cytoplasmic mutations, indicating that integrins in the extended conformation are unstable relative to the inactive, bent heterodimers. Interestingly, the screen has identified alleles that show gain-of-function characteristics in cell culture, but have negative effects on animal development or viability. This is illustrated by the allele mys(b58); available structural models suggest that the molecular lesion of mys(b58), V409>D, should promote the "open" conformation of the beta subunit I-like domain. This expectation is supported by the finding that alphaPS2betaPS (V409>D) promotes adhesion and spreading of S2 cells more effectively than does wild-type alphaPS2betaPS, even when betaPS is paired with alphaPS2 containing activating cytoplasmic mutations. Finally, comparisons with the sequence of human beta8 suggest that evolution has targeted the "mys(b58)" residue as a means of affecting integrin activity.  相似文献   

20.
Ribosomal protein L9 consists of two globular alpha/beta domains separated by a nine-turn alpha-helix. We examined the rRNA environment of L9 by chemical footprinting and directed hydroxyl radical probing. We reconstituted L9, or individual domains of L9, with L9-deficient 50 S subunits, or with deproteinized 23 S rRNA. A footprint was identified in domain V of 23 S rRNA that was mainly attributable to N-domain binding. Fe(II) was tethered to L9 via cysteine residues introduced at positions along the alpha-helix and in the C-domain, and derivatized proteins were reconstituted with L9-deficient subunits. Directed hydroxyl radical probing targeted regions of domains I, III, IV, and V of 23 S rRNA, reinforcing the view that 50 S subunit architecture is typified by interwoven rRNA domains. There was a striking correlation between the cleavage patterns from the Fe(II) probes attached to the alpha-helix and their predicted orientations, constraining both the position and orientation of L9, as well as the arrangement of specific elements of 23 S rRNA, in the 50 S subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号