首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During investigations of the regulation of tyrosine hydroxylase (TH) by protein phosphorylation, a novel protein kinase activity has been discovered in rat pheochromocytoma. Originally detected as a trace contaminant in preparations of highly purified TH, this novel kinase activity phosphorylated TH at serine 8 in the proline-rich amino-terminal region of the enzyme. This particular site is not phosphorylated by, nor is the amino acid sequence surrounding this site selective for, any of the classical (i.e. well characterized) protein kinases. In this report, we describe the identification, characterization, and partial purification of this novel protein kinase. By utilizing a synthetic peptide corresponding to the amino-terminal region of TH, a selective assay for this protein kinase was developed. The kinase activity utilized ATP and magnesium, although GTP could also be utilized as a phosphate donor. The kinase activity was found to co-purify with TH activity through ammonium sulfate precipitation and DEAE-cellulose chromatography and could be only partially resolved from TH by heparin-agarose affinity chromatography. Substantial kinase activity could be resolved from TH by phosphocellulose chromatography. The novel kinase migrates as a protein with a molecular mass of approximately 45 kDa on gel permeation chromatography as well as sucrose density gradient centrifugation. Studies of site specificity indicate that this Ser/Thr kinase activity appears to be directed by an adjacent (carboxyl-terminal) proline residue, exhibiting a minimal recognition sequence of -X-Ser/Thr-Pro-X-. In addition to TH, this proline-directed protein kinase will also phosphorylate synapsin I, histone H1, and glycogen synthase, suggesting that this kinase may have multiple substrates in vivo. Additional findings indicate that the activity of proline-directed protein kinase is increased transiently in PC12 pheochromocytoma cells following treatment with nerve growth factor. Distinctions between this novel kinase and other well characterized protein kinases can be made on the basis of phosphorylation site specificity, chromatographic behavior, and physical characteristics.  相似文献   

2.
A matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based kinase assay using a peptide substrate tagged with a biotinyl group has been developed. The peptide moiety was designed to serve as an efficient substrate for calcium/calmodulin-dependent protein kinase II, based on the in vivo phosphorylation site of phosrestin I, a Drosophila homolog of arrestin. In the assay, the quantitative relationship was determined from the ratio of the peak areas between the two peaks respectively representing the unphosphorylated and the phosphorylated substrate. Attempts to assay phosphorylated peptides directly from the reaction mixture, gave inaccurate results because of the high noise level caused by the presence of salts and detergents. In contrast, after purifying the substrate peptides with the biotin affinity tag using streptavidin-coated magnetic beads, peak areas accurately represented the ratio between the unphosphorylated and phosphorylated peptide. By changing the substrate peptide to a peptide sequence that serves as a kinase substrate, it is expected that an efficient non-radioactive protein kinase assay using MALDI-TOF MS can be developed for any type of protein kinase. We call this technique "Affinity-Tagged Phosphorylation Assay by MALDI-TOF MS (ATPA-MALDI)." ATPA-MALDI should serve as a quick and efficient non-radioactive protein kinase assay by MALDI-TOF MS.  相似文献   

3.
Several drugs inhibiting protein kinases have been launched successfully, demonstrating the attractiveness of protein kinases as therapeutic targets. Functional genomics research within both academia and industry has led to the identification of many more kinases as potential drug targets. Although a number of well-known formats are used for measuring protein kinase activity, some less well-characterized protein kinases identified through functional genomics present particular challenges for existing assay formats when there is limited knowledge of the endogenous substrates or activation mechanisms for these novel kinase targets. This is especially the case when a very sensitive assay is required to differentiate often highly potent inhibitors developed by late-stage medicinal chemistry programs. ACK1 is a non-receptor tyrosine kinase that has been shown to be involved in tumorigenesis and metastasis. Here we describe the development of an extremely sensitive high-throughput assay for ACK1 capable of detecting 240 fmol per well of the kinase reaction product employing a BV-tag-based electrochemiluminescence assay. This assay is universally applicable to protein tyrosine kinases using a BV-tag-labeled monoclonal antibody against phosphotyrosine. Furthermore, this assay can be extended to the evaluation of Ser/Thr kinases in those cases where an antibody recognizing the phospho-product is available.  相似文献   

4.
5.
Protein kinase assays that use recombinant pp90rsk as a substrate were developed in an attempt to identify growth-regulated enzymes responsible for the phosphorylation and activation of pp90rsk S6 phosphotransferase activity. With this assay we have ientified a pp60v-src-, growth factor-, phorbol ester-, and vanadate-regulated serine/threonine protein kinase activity that is not related to two other cofactor-independent, growth-regulated protein kinases, pp70-S6 protein kinase and pp90rsk. The pp90rsk-protein kinase activity (referred to as rsk-kinase) is also not related to cofactor-dependent signal transducing protein kinases such as the cyclic AMP-dependent protein kinases, members of the protein kinase C family, or other Ca2(+)-dependent protein kinases. In vitro, partially purified rsk-kinase phosphorylates several of the sites (serine and threonine) that are phosphorylated in growth-stimulated cultured cells. A detailed examination of the mitogen-regulated activation kinetics of rsk-kinase and pp90rsk activities demonstrated that they are coordinately regulated. In addition, protein kinase C is not absolutely required for epidermal and fibroblast growth factor-stimulated activation of rsk-kinase, whereas, like pp90rsk, platelet-derived growth factor- and vanadate-stimulated rsk-kinase activity exhibits a greater dependence on protein kinase C-mediated signal transduction. The characterization and future purification of the rsk-kinase(s) will improve our understanding of the early signaling events regulating cell growth.  相似文献   

6.
The Ras-MAPK signaling cascade transmits mitogenic stimuli from growth factor receptors and activated Ras to the cell nucleus. Inappropriate Ras activation is associated with approximately 30% of all human cancers. The kinase components of the Ras-MAPK signaling cascade are attractive targets for pharmaceutical intervention. Therefore, we have developed a high-throughput, nonradioactive ELISA method to monitor Raf and MEK1 kinase activity. In this assay system activated Raf phosphorylates and activates MEK1, which in turn phosphorylates MAPK. Antibodies that specifically detect phosphorylated MAPK (vs. nonphosphorylated MAPK) made enzyme-linked immunosorbent assay (ELISA) development possible. This assay detects inhibitors of Raf and/or MEK1 and has been used to screen large numbers of random compounds. The specific target of inhibition in the Raf/MEK1/MAPK ELISA can be subsequently identified by secondary assays which directly measure Raf phosphorylation of MEK1 or MEK1 phosphorylation of MAPK.  相似文献   

7.
8.
A novel peptide with multiple phosphorylation sites, which we designated as multide, was developed to detect a wide variety of protein kinases in crude cell extracts. Multide, KKRKSSLRRWSPLTPRQMSFDC, has been designed to contain consensus sequences for various Ser/Thr protein kinases including cAMP-dependent protein kinase, protein kinase C, MAP kinases, and Ca(2+)/calmodulin-dependent protein kinases in a single peptide. In-gel protein kinase assay using multide was found to be very useful for analyzing the activities of protein kinases that are altered in response to various extracellular stimuli. The substrate specificities of the protein kinases thus detected were further determined by using five multide analogs with different phosphorylation sites.  相似文献   

9.
Akt is a serine/threonine kinase that plays a critical role in cell survival signaling and its activation has been linked to tumorigenesis. Up-regulation of Akt as well as its upstream regulator phosphatidylinositol-3 kinase (PI3K) has been found in many tumors and the negative regulator of this pathway PTEN/MMAC is a tumor suppressor. As a target for drug discovery, we have expressed and purified an active Akt1 enzyme from a recombinant baculovirus-infected Sf9 cell culture. Coexpression of Akt1 with the catalytic subunit of PI3K or treatment with okadaic acid during expression was found to generate an active enzyme in the insect cell culture system. We have optimized the kinase activity and developed a simple quantitative kinase assay using biotinylated peptide substrates. Using the purified active enzyme, we have characterized its physical, catalytic and kinetic properties. Since Akt is closely related to protein kinase C (PKC) and protein kinase A, the issue of obtaining selective inhibitors of this enzyme was addressed by comparison of the structures of catalytic domains of Akt and PKC, derived by homology modeling methods. A number of amino acid differences in the ATP binding regions of these kinases were identified, suggesting that selective inhibitors of Akt can be discovered. However, the ATP binding regions are highly conserved in the three isoforms of Akt implying that the discovery of isoform-selective inhibitors would be very challenging.  相似文献   

10.
The effects of various ions commonly found in protein kinase assays upon the rate of histone phosphorylation catalyzed by the highly purified bovine brain enzyme, protein kinase I, have been investigated. Sodium, potassium, and magnesium were found to inhibit histone phosphorylation by protein kinase I in a similar manner. The degree of inhibition by any of these cations was demonstrated to be directly proportional to the square root of the ionic strength of the assay medium. The relationship between the ionic strength of the assay medium and the rate of histone phosphorylation catalyzed by protein kinase I was employed to correct the rate of histone phosphorylation at various magnesium acetate concentrations to a standard ionic strength. When this was done an analysis of the previously postulated rate law for histone phosphorylation c atalyzed by protein kinase I gave a binding constant for the magnesium-ATP complex which was in agreement with that expected for this complex on the basis of various binding constants available in the literature. These results demonstrate that it is unnecessary to postulate a specific ion inhibition process for protein kinase I by the ions employed in this study. They also support the reasonable assumption that magnesium ion binds to ATP at or prior to the rate-determining step in histone phosphorylation catalyzed by protein kinase I. The expression developed in this paper for the effect of ionic strength upon protein kinase I activity can now be used to correct activity measurements made under various assay conditions to a standard assay state, allowing facile comparisons of kinetic data. It should be possible to develop similar expressions for other protein kinases and substrates to permit useful interpretation of kinetic data.  相似文献   

11.
Akt is a serine/threonine kinase that plays a critical role in cell survival signaling and its activation has been linked to tumorigenesis. Up-regulation of Akt as well as its upstream regulator phosphatidylinositol-3 kinase (PI3K) has been found in many tumors and the negative regulator of this pathway PTEN/MMAC is a tumor suppressor. As a target for drug discovery, we have expressed and purified an active Akt1 enzyme from a recombinant baculovirus-infected Sf9 cell culture. Coexpression of Akt1 with the catalytic subunit of PI3K or treatment with okadaic acid during expression was found to generate an active enzyme in the insect cell culture system. We have optimized the kinase activity and developed a simple quantitative kinase assay using biotinylated peptide substrates. Using the purified active enzyme, we have characterized its physical, catalytic and kinetic properties. Since Akt is closely related to protein kinase C (PKC) and protein kinase A, the issue of obtaining selective inhibitors of this enzyme was addressed by comparison of the structures of catalytic domains of Akt and PKC, derived by homology modeling methods. A number of amino acid differences in the ATP binding regions of these kinases were identified, suggesting that selective inhibitors of Akt can be discovered. However, the ATP binding regions are highly conserved in the three isoforms of Akt implying that the discovery of isoform-selective inhibitors would be very challenging.  相似文献   

12.
A novel protein kinase, polyploidy-associated protein kinase (PAPK), was isolated using a subtraction cDNA library approach from a mouse erythroleukemia cell line that had been induced to polyploidy after serum withdrawal. PAPK shares homology with members of the Ste20/germinal center kinase family of protein kinases and is ubiquitously expressed as two spliced forms, PAPK-A and PAPK-B, that encode for proteins of 418 and 189 amino acids, respectively. The expression of endogenous PAPK-A protein increased after growth factor withdrawal in murine hematopoietic and fibroblast cells. When tested in an in vitro kinase assay, PAPK-A was activated in response to the stress-inducing agent hydrogen peroxide and slightly by fetal calf serum. Biochemical characterization of the PAPK-A-initiated pathway revealed that this novel kinase does not affect MAP kinase activity but can stimulate both c-Jun N-terminal kinase 1 (JNK1) and ERK6/p38 gamma. The kinase activity of PAPK appears to be required for the activation of ERK6/p38 gamma but not JNK1. When an inducible construct of PAPK-A was expressed in stably transfected NIH3T3 cells, the cells exhibited distinct cytoskeletal changes and became resistant to apoptotic cell death induced by serum withdrawal, effects of PAPK that require its kinase activity. These data suggest that PAPK is a new member of the Ste20/germinal center kinase family that modulates cytoskeletal organization and cell survival.  相似文献   

13.
Activation of protein kinases in response to growth factor and extracellular matrix stimulation has been implicated in regulating a number of cell functions including differentiation, gene expression, migration, and proliferation. An improved quantitative assay for measuring protein kinase activity is crucial to the detailed study of this important category of signaling proteins and their role in regulating cell behavior. We describe a modified in vitro kinase activity assay that is both sensitive and quantitative. It offers several advantages when compared to the traditional immunoprecipitation/kinase assay: (i) high sensitivity that reduces the required amount of cell lysate by an order of magnitude, (ii) an immunoseparation technique utilizing antibody immobilization onto the surface of microtiter wells that replaces the cumbersome immunoprecipitation method, (iii) a 96-well plate configuration that eases handling of multiple samples and increases throughput of the assay, and (iv) the use of 96-well filter plates that greatly reduces radioactive liquid waste generation. While we implement this technique in a case study for measuring the activity of extracellular signal-regulated kinase 2 (ERK2), this assay can be extended to studying other protein kinases by using an appropriate antibody and in vitro substrate for the kinase of interest.  相似文献   

14.
The protein kinase CDK5 (cyclin-dependent kinase 5) is activated through its association with a cyclin-like protein p35 or p39. In pathological conditions (such as Alzheimer's disease and various other neuropathies), truncation of p35 leads to the appearance of the p25 protein. The interaction of p25 with CDK5 up-regulates the kinase activity and modifies the substrate specificity. ATP-mimetic inhibitors of CDK5 have already been developed. However, the lack of selectivity of such inhibitors is often a matter of concern. An alternative approach can be used to identify highly specific inhibitors that disrupt protein interactions involving protein kinases. We have developed a bioluminescence resonance energy transfer (BRET)-based screening assay in yeast to discover protein-protein interaction inhibitors (P2I2). Here, we present the first use of BRET in yeast for the screening of small molecule libraries. This screening campaign led to the discovery of one molecule that prevents the interaction between CDK5 and p25, thus inhibiting the protein kinase activity. This molecule may give rise to high-specificity drug candidates.  相似文献   

15.
16.
New methods to quantify protein kinase activities directly from complex cellular mixtures are critical for understanding biological regulatory pathways. Herein, a fluorescence-based chemosensor strategy for the direct measurement of kinase activities in crude mammalian cell lysates is described. We first designed a new fluorescent peptide reporter substrate for each target kinase. These kinase chemosensors were readily phosphorylated by recombinant target enzyme and underwent a several-fold fluorescence increase upon phosphorylation. Then, using unfractionated cell lysates, a homogeneous kinase assay was developed that was reproducible, linear and highly preferential for monitoring changes in cellular activity of the target kinase. The general protocol was developed for the kinase Akt and then easily extended to measure protein kinase A (PKA) and mitogen-activated protein kinase-associated protein kinase 2 (MK2) activities. This assay platform is immediately useful for studying protein kinase signaling in crude cellular extracts.  相似文献   

17.
18.
Monitoring of intracellular protein kinase activity is very important for fields involving diagnosis and drug screening. However, current methods, such as radiometry using (32)P, or ELISA, are laborious and time-consuming. We have developed high-throughput assay system of protein kinase activity using mass-tagged substrate peptide probes and mass spectrometry. This assay system can easily evaluate target kinase activity and will potentially be able to simultaneously profile many protein kinase activities.  相似文献   

19.
Micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection has been developed for a protein kinase assay. This protein kinase assay could readily determine the phosphorylation activity of substrate peptide kemptide using cAMP-dependent protein kinase (PKA) as a model enzyme. Kemptide and phosphorylated kemptide could be reacted with 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-F) as a fluorescence derivatization reagent for LIF detection by directly adding NBD-F into the PKA enzymatic reaction mixture. These derivatives of substrate and product were separated and detected within the analysis time of 5 min by micellar electrokinetic mode using a mixture of sodium dodecylsulfate and methanol as a running buffer. Good linearity of the peak response of the phosphorylated kemptide was obtained over the range of 1-20 mU/tube of PKA in the assay. The relative standard deviation of the peak areas of the phosphorylated kemptide using 2, 5 and 10 mU/tube of PKA were calculated to <10.4%, indicating that the assay was reproducible. Also, IC(50) values of six PKA inhibitors, the K(i) value and the inhibition pattern of one inhibitor, which were calculated to estimate by the variation of the peak area of the phosphorylated kemptide using 5 mU/tube of PKA, were consistent with the published data. The sensitivity of the assay was higher than that of enzyme-linked immunosorbent assay (ELISA) for PKA phosphorylation activity, as IC(50) values, K(i) value, and the inhibition mechanism of inhibitors could be estimated using one-tenth amounts of PKA, compared with that of ELISA. The MEKC-LIF is expected to be very useful for protein kinase assay and its application to the estimation of inhibitors because this method does not entail experimentally troublesome procedures such as the preparation of antibody or fluorescence-labeled substrate.  相似文献   

20.
An assay has been developed for the measurement of mevalonate kinase activity in extracts of cultured human fibroblasts and lymphoblasts. Individual elements of the assay were investigated in order to achieve optimum conditions. Apparent Michaelis constants (KMapp) for the substrates mevalonic acid and adenosine-5'-triphosphate were 22 +/- 10 mumol/l and 0.42-0.53 mmol/l, respectively, in lysates of control fibroblast lines. The same values in lysates of a control lymphoblast line were 17 mumol/l and 0.23 mmol/l, respectively. Mevalonate kinase activity in extracts of cultured fibroblasts derived from 6 control individuals was 3.24 +/- (SD) 0.91 nmol/min/mg protein. The activity in extracts of fibroblasts derived from a patient with mevalonic aciduria was 0.15 +/- 0.10 nmol/min/mg protein, approximately 5% of the control mean. The parents and brother of the patient displayed mevalonate kinase activities in fibroblast extracts approximating 38-42% of the control mean. Substantially higher mevalonate kinase activity was documented in extracts of cultured lymphoblasts. When assayed on various occasions, the mean activity of mevalonate kinase in extracts of lymphoblasts derived from the parents, brother and maternal grandmother of the patient ranged from 27 to 32% of the mean activity of 9.8 +/- (SD) 3.4 nmol/min/mg protein measured in a parallel control lymphoblast line, while the mean activity in a maternal and paternal uncle approximated 65-89% of the same control mean. The mean activity in extracts of lymphoblasts derived from the patient approximated 2% of the control mean. The data suggest that the parents, brother and maternal grandmother are carriers of the defective gene responsible for mevalonate kinase deficiency, consistent with an autosomal recessive mode of inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号