首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New uses for new haplotypes the human Y chromosome, disease and selection   总被引:10,自引:0,他引:10  
Recent discoveries of many new genes have made it clear that there is more to the human Y chromosome than a heap of evolutionary debris, hooked up to a sequence that happens to endow its bearer with testes. Coupled with the recent development of new polymorphic markers on the Y, making it the best-characterized haplotypic system in the genome, this gives us new opportunities to assess its role in disease and selection, through association studies with phenotypes such as infertility and cancers. However, the peculiar genetics of this bizarre chromosome means that we should interpret such studies particularly cautiously.  相似文献   

2.
Kim MY  Lee HK  Park JS  Park SH  Kwon HB  Soh J 《Genomics》1999,57(1):156-159
To identify a new gene(s) located on the yeast artificial chromosome (YAC) clone D142H8 that was mapped to human chromosome 21q22.1, purified YAC DNA from the clone was utilized directly as a probe to screen a human brain cDNA library after the suppression of human repetitive DNA. One cDNA clone hybridizing specifically to the YAC D142H8 DNA was identified. The clone has an insert of 1341 bp and the longest open reading frame of 349 amino acids. A search of GenBank revealed that the clone has a high degree of homology to zeta-crystallin (quinone reductase) at the amino acid level, and its nucleotide sequence represents the expressed sequence from the 50-kb segment of the human chromosome 21q11.1. Thus a new gene was named CRYZL1 (zeta-crystalline-like 1). Genomic Southern blot with total human and yeast DNAs suggests that CRYZL1 might be a single-copy gene. The fluorescence in situ hybridization procedure was applied, and the results showed that the gene mapped to the human chromosome 21q22.1 subband. The CRYZL1 mRNA was expressed in heart, brain, skeletal muscle, kidney, pancreas, liver, and lungs but at different levels in different tissues.  相似文献   

3.
Rom-1 is a retinal integral membrane protein that, together with the product of the human retinal degeneration slow gene (RDS), defines a photoreceptor-specific protein family. The gene for rom-1 (HGM symbol: ROM1) has been assigned to human chromosome 11 and mouse chromosome 19 by Southern blot analysis of somatic cell hybrid DNAs. ROM1 was regionally sublocalized to human 11p13-11q13 by using three mouse-human somatic cell hybrids; in situ hybridization refined the sublocalization to human 11q13. Analysis of somatic cell hybrids suggested that the most likely localization of ROM1 is in the approximately 2-cM interval between human PGA (human pepsinogen A) and PYGM (muscle glycogen phosphorylase). ROM1 appears to be a new member of a conserved syntenic group whose members include such genes as CD5, CD20, and OSBP (oxysterol-binding protein), on human chromosome 11 and mouse chromosome 19. Localization of the ROM1 gene will permit the examination of its linkage to hereditary retinopathies in man and mouse.  相似文献   

4.
Summary A human genomic DNA fragment, p22hom13 (D22S16), was isolated from a chromosome 22-specific library. After elimination of repetitive sequences, a single copy BamHI-EcoRI fragment was subcloned into pTZ18. By using mouse/human somatic cell hybrids and in situ hybridization, the new DNA probe was mapped to chromosome 22q13-qter. Its application in the analysis of the distal part of chromosome 22 and its diagnostic use in translocations are discussed.  相似文献   

5.
We have isolated and sequenced part of a new gene of the tyrosine kinase family. This gene, called FLT3, has strong sequence similarities with members of a group of genes encoding growth factor receptors: FMS, KIT, and PDGFR. We have localized the human FLT3 gene to chromosome 13, band q12, and its mouse homolog to chromosome 5, region G.  相似文献   

6.
Human chromosome 9 is involved in a number of recurrent structural rearrangements; moreover, its pericentromeric region exhibits a remarkable evolutionary plasticity. In this study we present the molecular characterization of a constitutional rearrangement, involving the 9p21.1q13 region, which led to the formation of a supernumerary marker chromosome (SMC). We defined the sequence of the breakpoints and identified a new set of duplicons on human chromosome 9, named LCR9s (chromosome 9 low-copy repeats). Two of these duplicons were shown to be involved in a somatic exchange leading to the formation of the SMC. High-resolution FISH coupled to database search demonstrated that a total number of 35 LCR9 paralogs are present in the human genome. These newly described chromosome 9 duplicons have features that may be crucial in driving structural chromosome rearrangements in germinal and somatic cells.  相似文献   

7.
Summary To detect new restriction fragment length polymorphisms that would cover human chromosome 7 with a network of genetic landmarks, a chromosome 7-specific phage gene library was screened for human single-copy fragments. With use of a somatic cell hybrid panel containing defined regions of human chromosome 7, 41 cloned human single-copy sequences were assigned to five regions of this chromosome. Of special importance are the cell hybrid clones GM1059Rag5 and 7851Rag10-1, derived from human cells with interstitial deletions spanning the bands 7q22-q32, within which the cystic fibrosis gene is located. Twelve new probes are described in 7q22-q32, five of which detect a total of six RFLPs.  相似文献   

8.
 LOK is a new and unique member of the STE20 family with serine/threonine kinase activity, and its expression is restricted mostly to lymphoid cells in mice. We cloned the cDNA encoding the human homologue of LOK. The amino acid sequence deduced from the cDNA shows a high similarity to that of mouse LOK, with 88% identity as a whole. The kinase domains at the N-terminus and the coiled-coil regions at the C-terminus are particularly conserved, showing 98% and 93% identity, respectively. Western blot analysis with mouse LOK-specific antibody detected 130 000 M r LOK proteins in human and rat lymphoid cell lines and tissues. The gene encoding the LOK (STK10/Stk10) gene was mapped by fluorescence in situ hybridization to chromosome 5q35.1 in human, chromosome 11A4 in mouse, and chromosome 10q12.3 in rat. By virtue of polymorphic CA repeats found in the 3' untranslated region of the mouse Stk10 gene, the Stk10 locus was further pinpointed to chromosome 11 between D11Mit53 and D11Mit84, using the intersubspecific backcross mapping panel. These results established STK10 as a new marker of human chromosome 5 to define the syntenic boundary of human chromosomes 5 and 16 on mouse chromosome 11. Received: 28 September 1998 / Revised: 2 November 1998  相似文献   

9.
Murnane JP 《Mutation research》2012,730(1-2):28-36
The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is therefore important for understanding chromosome instability in human cancer.  相似文献   

10.
A gene for tryptophanyl-tRNA synthetase (EC 6.1.1.2), the enzyme which attaches tryptophan to its tRNA, has previously been assigned to human chromosome 14 by analysis of man-mouse somatic cell hybrids. We report here a method for the electrophoretic separation of Chinese hamster and human tryptophanyl-tRNA synthetases and its application to a series of independently derived Chinese hamster-human hybrids in which part of the human chromosome 14 has been translocated to the human X chromosome. When this derivative der (X),t(X;14) (Xqter leads to Xp22::14q21 leads to 14qter) chromosome carrying the human gene for hypoxanthine-guanine phosphoribosyltransferase was selected for and against in cell hybrid lines by the appropriate selective conditions, the human tryptophanyl-tRNA synthetase activity was found to segregate concordantly. These results provide additional confirmation for the assignment of the tryptophanyl-tRNA synthetase gene to human chromosome 14 and define its intrachromosomal location in the region 14q21 leads to 14qter. Our findings indicate that the genes for tryptophanyl-tRNA synthetase and for ribosomal RNA are not closely linked on chromosome 14.  相似文献   

11.
Analysis of DNA sequences of the human chromosomes 21 and 22 performed using a specially designed MegaGene software allowed us to obtain the following results. Purine and pyrimidine nucleotide residues are unevenly distributed along both chromosomes, displaying maxima and minima (Y waves phi) with a period of about 3 Mbp. Distribution of G + C along both chromosomes has no distinct maxima and minima, however, chromosome 21 contains considerably less G + C than chromosome 22. Both exons and Alu repeats are unevenly distributed along chromosome 21: they are scarce in its left part and abundant in the right part, while MIR elements are quite monotonously spread along this chromosome. The Alu repeats show a wave-like distribution pattern similar for both repeat orientations. The number of the Alu repeats of opposite orientations was equal for both studied chromosomes, and this may be considered a new property of the human genome. The positive correlation between the exon and Alu distribution patterns along the chromosome, the concurrent distribution of Alu repeats in both orientations along the chromosome, and the equal copy numbers for Alu in direct and inverted orientations within an individual chromosome point to their important role in the human genome, and do not fit the notion that Alu repeats belong to parasitic (junk) DNA.  相似文献   

12.
Evidence for assigning the locus determining the structure of adenine phosphoribosyltransferase (APRT) to human chromosome No. 16 is presented. Hybrids of APRT-deficient mouse cells and of human fibroblasts having normal APRT were isolated by fusing the parental cells with Sendai virus, blocking de novo purine nucleotide synthesis with azaserine and selecting for hybrids that could use exogenous adenine. The hybrid clones that were studied had only APRT activity that was indistinguishable from human APRT with regard to electrophoretic migration and reaction with antibodies against the partially purified human enzyme. No. 16 was the only human chromosome consistently present in all of the clones, and in one clone, it was the only human chromosome detected. Selection against hybrid cells with 2,6-diaminopurine (DAP) yielded DAP-resistant survivors that lacked chromosome No. 16. One hybrid that originally had an intact No. 16 yielded adenine-utilizing subclones that lacked No. 16 but had a new submetacentric chromosome. The distribution of centromere-associated heterochromatin and the fluorescence pattern indicated that this chromosome consisted of a mouse telocentric chromosome and the long arm of No. 16. Cells having the submetacentric chromosome had human APRT. Both the enzyme and the chromosome were absent in DAP-resistant derivatives. These results suggest that the structure of APRT is defined by a locus on the long arm of human chromosome No. 16.  相似文献   

13.
Telomeres and chromosome instability   总被引:4,自引:0,他引:4  
Murnane JP 《DNA Repair》2006,5(9-10):1082-1092
Genomic instability has been proposed to play an important role in cancer by accelerating the accumulation of genetic changes responsible for cancer cell evolution. One mechanism for chromosome instability is through the loss of telomeres, which are DNA-protein complexes that protect the ends of chromosomes and prevent chromosome fusion. Telomere loss can occur as a result of exogenous DNA damage, or spontaneously in cancer cells that commonly have a high rate of telomere loss. Mouse embryonic stem cells and human tumor cell lines that contain a selectable marker gene located immediately adjacent to a telomere have been used to investigate the consequences of telomere loss. In both cell types, telomere loss is followed by either the addition of a new telomere on to the end of the broken chromosome, or sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles that result in DNA amplification and large terminal deletions. The regions amplified by B/F/B cycles can then be transferred to other chromosomes, either through the formation of double-minute chromosomes that reintegrate at other sites, or through end-to-end fusions between chromosomes. B/F/B cycles eventually end when a chromosome acquires a new telomere by one of several mechanisms, the most common of which is translocation, which can involve either nonreciprocal transfer or duplication of all or part of an arm of another chromosome. Telomere acquisition involving nonreciprocal translocations results in the loss of a telomere on the donor chromosome, which subsequently becomes unstable. In contrast, translocations involving duplications do not destabilize the donor chromosome, although they result in allelic imbalances. Thus, the loss of a single telomere can generate a wide variety of chromosome alterations commonly associated with human cancer, not only on the chromosome that originally lost its telomere, but other chromosomes as well. Factors promoting spontaneous telomere loss and the resulting B/F/B cycles are therefore likely to be important in generating the karyotypic changes associated with human cancer.  相似文献   

14.
Human chromosome 21-encoded cDNA clones   总被引:9,自引:0,他引:9  
We have employed two strategies to isolate random cDNA clones encoded by chromosome 21. In the first approach, a cDNA library representing expressed genes of WA17, a mouse-human somatic cell hybrid carrying chromosome 21 as its sole human chromosome, was screened with total human DNA to identify human chromosome 21-specific cDNAs. The second approach utilized previously characterized single-copy genomic fragments from chromosome 21 as probes to retrieve homologous coding sequences from a human fetal brain cDNA library. Six cDNA clones on chromosome 21 were obtained in this manner. Two were localized to the proximal long arm of chromosome 21, two to the distal portion of the long arm, and one to the region of 21q22 implicated in the pathology of Down syndrome.  相似文献   

15.
16.
A genomic cosmid library was constructed from a Chinese hamster/human hybrid cell containing human intact chromosome 22 as its only human component. Of 1000 cosmids with inserts derived from human chromosome 22, 191 were tested for restriction fragment length polymorphisms (RFLPs). As a result, 64 clones detected RFLPs, including five variable number of tandem repeats systems. Of the remaining 127 cosmids, 111 detected a single copy sequence on human chromosome 22. Five somatic cell hybrids allowed us to assign all of the 64 polymorphic cosmids and 44 non-polymorphic cosmids to four different regions of human chromosome 22. In two patients with DiGeorge syndrome, one of the cosmids that had been sublocalized to 22pter-q11 detected hemizygosity. These 108 cosmid markers regionally assigned to human chromosome 22 should be useful for the construction of long-range physical maps and the identification of genetic alterations on the chromosome.  相似文献   

17.
Isolation and mapping of 88 new RFLP markers on human chromosome 8.   总被引:1,自引:0,他引:1  
M Emi  E Takahashi  K Koyama  K Okui  M Oshimura  Y Nakamura 《Genomics》1992,13(4):1261-1266
To obtain new RFLP markers for construction of a high-resolution map of human chromosome 8, a cosmid library was constructed from a somatic hybrid cell that contained chromosome 8 as the only human component in mouse genomic background. Eighty-eight new RFLP markers were isolated and characterized, and 71 of them were sublocalized to chromosomal bands by fluorescent in situ hybridization (FISH). Of these, 36 were localized to the short arm, 34 to the long arm, and 1 to the centromeric region. Five markers defined VNTR loci. This work represents the first extensive isolation and physical mapping of RFLP markers on human chromosome 8. These new markers will serve as useful resources for linkage mapping of loci for inherited diseases and for efforts to identify a putative tumor suppressor gene(s) on chromosome 8.  相似文献   

18.
人牛精浆蛋白相关新基因的cDNA克隆、定位和表达   总被引:4,自引:0,他引:4  
为了研究牛精浆 (bovineseminalplasma ,BSP)蛋白及其相关蛋白在受精及受精卵发育中的重要作用 ,寻找BSP蛋白相关新基因 .采用cDNA末端快速扩增 (RACE)技术 ,克隆了一个BSP蛋白相关基因的cDNA序列 .应用辐射杂种细胞系 (RH)技术进行了基因染色体定位 .通过RT PCR检测了该基因在人体各组织中的表达情况 .并将该基因编码的蛋白进行了原核表达 .新基因的cDNA长度为 10 5 2bp ,其开放阅读框架 (ORF)编码了一个含 2 2 3个氨基酸残基的蛋白质 ,氨基酸序列中含有 4个纤连蛋白Ⅱ结构域 ,与BSP蛋白在结构上具有一定的相似性 ,称其为人BSP相关蛋白 (humanBSP relatedproteins ,HBRP) .该基因定位于染色体 19q13,在大肠杆菌中表达为 5 2kD的融合蛋白 .研究结果提示 ,应用RACE方法克隆了一种新的人类与BSP蛋白相关的基因 ,推测其编码蛋白是与BSP蛋白功能相关的结合蛋白 ,通过基因重组技术大量获得表达蛋白 ,对进一步研究新蛋白的生物学功能具有重要的意义 .  相似文献   

19.
Wheat is the third most important crop for human nutrition in the world. The availability of high-resolution genetic and physical maps and ultimately a complete genome sequence holds great promise for breeding improved varieties to cope with increasing food demand under the conditions of changing global climate. However, the large size of the bread wheat (Triticum aestivum) genome (approximately 17 Gb/1C) and the triplication of genic sequence resulting from its hexaploid status have impeded genome sequencing of this important crop species. Here we describe the use of mitotic chromosome flow sorting to separately purify and then shotgun-sequence a pair of telocentric chromosomes that together form chromosome 4A (856 Mb/1C) of wheat. The isolation of this much reduced template and the consequent avoidance of the problem of sequence duplication, in conjunction with synteny-based comparisons with other grass genomes, have facilitated construction of an ordered gene map of chromosome 4A, embracing ≥85% of its total gene content, and have enabled precise localization of the various translocation and inversion breakpoints on chromosome 4A that differentiate it from its progenitor chromosome in the A genome diploid donor. The gene map of chromosome 4A, together with the emerging sequences of homoeologous wheat chromosome groups 4, 5 and 7, represent unique resources that will allow us to obtain new insights into the evolutionary dynamics between homoeologous chromosomes and syntenic chromosomal regions.  相似文献   

20.
Chromosome rearrangement has been considered to be important in the evolutionary process. Here, we demonstrate the evolutionary relationship of the rearranged human chromosome 12 and the corresponding chromosome XII in apes (chimpanzee, bonobo, gorilla, orangutan, and gibbon) by examining PCR products derived from the breakpoints of inversions and by conducting shotgun sequencing of a gorilla fosmid clone containing the breakpoint and a "duplicated segment" (duplicon). We confirmed that a pair of 23-kb duplicons flank the breakpoints of inversions on the long and short arms of chimpanzee chromosome XII. Although only the 23-kb duplicon on the long arm of chimpanzee chromosome XII and its telomeric flanking sequence are found to be conserved among the hominoids (human, great apes, and gibbons), the duplicon on the short arm of chimpanzee chromosome XII is suggested to be the result of a duplication from that on the long arm. Furthermore, the shotgun sequencing of a gorilla fosmid indicated that the breakpoint on the long arm of the gorilla is located at a different position 1.9 kb from that of chimpanzee. The region is flanked by a sequence homologous to that of human chromosome 6q22. Our findings and sequence analysis suggest a close relationship between segmental duplication and chromosome rearrangement (or breakpoint of inversion) in Hominoidea. The role of the chromosome rearrangement in speciation is also discussed based on our new results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号