共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Maximum-likelihood approaches to phylogenetic estimation have the potential of great flexibility, even though current implementations are highly constrained. One such constraint has been the limitation to one-parameter models of substitution. A general implementation of Newton's maximization procedure was developed that allows the maximum likelihood method to be used with multiparameter models. The Estimate and Maximize (EM) algorithm was also used to obtain a good approximation to the maximum likelihood for a certain class of multiparameter models. The condition for which a multiparameter model will only have a single maximum on the likelihood surface was identified. Two-and three-parameter models of substitution in base-paired regions of RNA sequences were used as examples for computer simulations to show that these implementations of the maximum likelihood method are not substantially slower than one-parameter models. Newton's method is much faster than the EM method but may be subject to divergence in some circumstances. In these cases the EM method can be used to restore convergence. 相似文献
7.
8.
Linda M. Haines 《Biometrics》2016,72(4):1235-1245
9.
10.
Željko Bajzer Terry M. Therneau Joseph C. Sharp Franklin G. Prendergast 《European biophysics journal : EBJ》1991,20(5):247-262
The usefulness of fluorescence techniques for the study of macromolecular structure and dynamics depends on the accuracy and sensitivity of the methods used for data analysis. Many methods for data analysis have been proposed and used, but little attention has been paid to the maximum likelihood method, generally known as the most powerful statistical method for parameter estimation. In this paper we study the properties and behavior of maximum likelihood estimates by using simulated fluorescence intensity decay data. We show that the maximum likelihood method provides generally more accurate estimates of lifetimes and fractions than does the standard least-squares approach especially when the lifetime ratios between individual components are small. Three novelties to the field of fluorescence decay analysis are also introduced and studied in this paper: a) discretization of the convolution integral based on the generalized integral mean value theorem: b) the likelihood ratio test as a tool to determine the number of exponential decay components in a given decay profile; and c) separability and detectability indices which provide measures on how accurately, a particular decay component can be detected. Based on the experience gained from this and from our previous study of the Padé-Laplace method, we make some recommendations on how the complex problem of deconvolution and parameter estimation of multiexponential functions might be approached in an experimental setting.
Offprint requests to: F. G. Prendergast 相似文献
11.
12.
Heagerty PJ 《Biometrics》2002,58(2):342-351
Marginal generalized linear models are now frequently used for the analysis of longitudinal data. Semiparametric inference for marginal models was introduced by Liang and Zeger (1986, Biometrics 73, 13-22). This article develops a general parametric class of serial dependence models that permits likelihood-based marginal regression analysis of binary response data. The methods naturally extend the first-order Markov models of Azzalini (1994, Biometrika 81, 767-775) and prove computationally feasible for long series. 相似文献
13.
Summary In the maximum likelihood (ML) method for estimating a molecular phylogenetic tree, the pattern of nucleotide substitutions for computing likelihood values is assumed to be simpler than that of the actual evolutionary process, simply because the process, considered to be quite devious, is unknown. The problem, however, is that there has been no guarantee to endorse the simplification.To study this problem, we first evaluated the robustness of the ML method in the estimation of molecular trees against different nucleotide substitution patterns, including Jukes and Cantor's, the simplest ever proposed. Namely, we conducted computer simulations in which we could set up various evolutionary models of a hypothetical gene, and define a true tree to which an estimated tree by the ML method was to be compared. The results show that topology estimation by the ML method is considerably robust against different ratios of transitions to transversions and different GC contents, but branch length estimation is not so. The ML tree estimation based on Jukes and Cantor's model is also revealed to be resistant to GC content, but rather sensitive to the ratio of transitions to transversions.We then applied the ML method with different substitution patterns to nucleotide sequence data ontax gene from T-cell leukemia viruses whose evolutionary process must have been more complicated than that of the hypothetical gene. The results are in accordance with those from the simulation study, showing that Jukes and Cantor's model is as useful as a more complicated one for making inferences about molecular phylogeny of the viruses. 相似文献
14.
15.
We present an alternative method for calculating likelihoods in molecular phylogenetics. Our method is based on partial likelihood tensors, which are generalizations of partial likelihood vectors, as used in Felsenstein's approach. Exploiting a lexicographic sorting and partial likelihood tensors, it is possible to obtain significant computational savings. We show this on a range of simulated data by enumerating all numerical calculations that are required by our method and the standard approach. 相似文献
16.
Suppose that independent observations are drawn from multipledistributions, each of which is a mixture of two component distributionssuch that their log density ratio satisfies a linear model witha slope parameter and an intercept parameter. Inference forsuch models has been studied using empirical likelihood, andmixed results have been obtained. The profile empirical likelihoodof the slope and intercept has an irregularity at the null hypothesisso that the two component distributions are equal. We derivea profile empirical likelihood and maximum likelihood estimatorof the slope alone, and obtain the usual asymptotic propertiesfor the estimator and the likelihood ratio statistic regardlessof the null. Furthermore, we show the maximum likelihood estimatorof the slope and intercept jointly is consistent and asymptoticallynormal regardless of the null. At the null, the joint maximumlikelihood estimator falls along a straight line through theorigin with perfect correlation asymptotically to the firstorder. 相似文献
17.
The pool adjacent violator algorithm Ayer et al. (1955, The Annals of Mathematical Statistics, 26, 641-647) has long been known to give the maximum likelihood estimator of a series of ordered binomial parameters, based on an independent observation from each distribution (see Barlow et al., 1972, Statistical Inference under Order Restrictions, Wiley, New York). This result has immediate application to estimation of a survival distribution based on current survival status at a set of monitoring times. This paper considers an extended problem of maximum likelihood estimation of a series of 'ordered' multinomial parameters p(i)= (p(1i),p(2i),.,p(mi)) for 1 相似文献
18.
19.
The additive hazards model specifies the effect of covariates on the hazard in an additive way, in contrast to the popular Cox model, in which it is multiplicative. As the non-parametric model, additive hazards offer a very flexible way of modeling time-varying covariate effects. It is most commonly estimated by ordinary least squares. In this paper, we consider the case where covariates are bounded, and derive the maximum likelihood estimator under the constraint that the hazard is non-negative for all covariate values in their domain. We show that the maximum likelihood estimator may be obtained by separately maximizing the log-likelihood contribution of each event time point, and we show that the maximizing problem is equivalent to fitting a series of Poisson regression models with an identity link under non-negativity constraints. We derive an analytic solution to the maximum likelihood estimator. We contrast the maximum likelihood estimator with the ordinary least-squares estimator in a simulation study and show that the maximum likelihood estimator has smaller mean squared error than the ordinary least-squares estimator. An illustration with data on patients with carcinoma of the oropharynx is provided. 相似文献
20.
Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods 总被引:16,自引:0,他引:16
Ziheng Yang 《Journal of molecular evolution》1994,39(3):306-314
Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called the discrete gamma model, uses several categories of rates to approximate the gamma distribution, with equal probability for each category. The mean of each category is used to represent all the rates falling in the category. The performance of this method is found to be quite good, and four such categories appear to be sufficient to produce both an optimum, or near-optimum fit by the model to the data, and also an acceptable approximation to the continuous distribution. The second method, called fixed-rates model, classifies sites into several classes according to their rates predicted assuming the star tree. Sites in different classes are then assumed to be evolving at these fixed rates when other tree topologies are evaluated. Analyses of the data sets suggest that this method can produce reasonable results, but it seems to share some properties of a least-squares pairwise comparison; for example, interior branch lengths in nonbest trees are often found to be zero. The computational requirements of the two methods are comparable to that of Felsenstein's (1981, J Mol Evol 17:368–376) model, which assumes a single rate for all the sites. 相似文献