首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in the study of human hepatocytes derived from induced pluripotent stem cells (iPSC) represent new promises for liver disease study and drug discovery. Human hepatocytes or hepatocyte-like cells differentiated from iPSC recapitulate many functional properties of primary human hepatocytes and have been demonstrated as a powerful and efficient tool to model human liver metabolic diseases and facilitate drug development process. In this review, we summarize the recent progress in this field and discuss the future perspective of the application of human iPSC derived hepatocytes.  相似文献   

2.
Application of liver stem cells for cell therapy   总被引:3,自引:0,他引:3  
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver disease. Embryonic stem cells can be readily differentiated into hepatocytes, and their transplantation into animals has improved liver function in the absence of teratoma formation: their use in bioartificial liver support is an obvious application. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted foetal or adult hepatocytes have proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells is clearly vital for survival in many cases of acute liver failure, but surprisingly little progress has been made with these cells in terms of transplantation. Finally there is the controversial subject of autologous bone marrow, and while the contribution of these indigenous cells to liver turnover seems at best, trivial, results from a small number of phase 1 studies of transplantation of bone marrow to cirrhotic patients have been moderately encouraging.  相似文献   

3.
Stem cell-derived hepatocytes may be an alternative cell source to treat liver diseases or to be used for pharmacological purposes. We developed a protocol that mimics mammalian liver development, to differentiate cells with pluripotent characteristics to hepatocyte-like cells. The protocol supports the stepwise differentiation of human embryonic stem cells (ESC) to cells with characteristics of primitive streak (PS)/mesendoderm (ME)/definitive endoderm (DE), hepatoblasts, and finally cells with phenotypic and functional characteristics of hepatocytes. Remarkably, the same protocol can also differentiate rat multipotent adult progenitor cells (rMAPCs) to hepatocyte-like cells, even though rMAPC are isolated clonally from cultured rat bone marrow (BM) and have characteristics of primitive endoderm cells. A fraction of rMAPCs can be fated to cells expressing genes consistent with a PS/ME/DE phenotype, preceding the acquisition of phenotypic and functional characteristics of hepatocytes. Although the hepatocyte-like progeny derived from both cell types is mixed, between 10–20% of cells are developmentally consistent with late fetal hepatocytes that have attained synthetic, storage and detoxifying functions near those of adult hepatocytes. This differentiation protocol will be useful for generating hepatocyte-like cells from rodent and human stem cells, and to gain insight into the early stages of liver development.  相似文献   

4.
Abstract

Research involving differentiated embryonic stem (ES) cells may revolutionize the study of liver disease, improve the drug discovery process, and assist in the development of stem-cell-based clinical therapies. Generation of ES cell-derived hepatic tissue has benefited from an understanding of the cytokines, growth factors and biochemical compounds that are essential in liver development, and this knowledge has been used to mimic some aspects of embryonic development in vitro. Although great progress has been made in differentiating human ES cells into liver cells, current protocols have not yet produced cells with the phenotype of a mature hepatocyte. There is a of disease models have been examined concerning whether stem cells can correct liver disease. It is a bit premature to conclude that hepatocytes can be generated from non-hepatic cells in culture that will be clinically useful. Standard criteria will need to be developed to assess the extent to which human stem cell-derived hepatocytes have been produced.  相似文献   

5.
Terry C  Dhawan A  Mitry RR  Hughes RD 《Cryobiology》2006,53(2):149-159
Hepatocytes isolated from unused donor livers are being used for transplantation in patients with acute liver failure and liver-based metabolic defects. As large numbers of hepatocytes can be prepared from a single liver and hepatocytes need to be available for emergency and repeated treatment of patients it is essential to be able to cryopreserve and store cells with good thawed cell function. This review considers the current status of cryopreservation of human hepatocytes discussing the different stages involved in the process. These include pre-treatment of cells, freezing solution, cryoprotectants and freezing and thawing protocols. There are detrimental effects of cryopreservation on hepatocyte structure and metabolic function, including cell attachment, which is important to the engraftment of transplanted cells in the liver. Cryopreserved human hepatocytes have been successfully used in clinical transplantation, with evidence of replacement of missing function. Further optimisation of hepatocyte cryopreservation protocols is important for their use in hepatocyte transplantation.  相似文献   

6.
The liver, an organ with an exceptional regeneration capacity, carries out a wide range of functions, such as detoxification, metabolism and homeostasis. As such, hepatocytes are an important model for a large variety of research questions. In particular, the use of human hepatocytes is especially important in the fields of pharmacokinetics, toxicology, liver regeneration and translational research. Thus, this method presents a modified version of a two-step collagenase perfusion procedure to isolate hepatocytes as described by Seglen 1.Previously, hepatocytes have been isolated by mechanical methods. However, enzymatic methods have been shown to be superior as hepatocytes retain their structural integrity and function after isolation. This method presented here adapts the method designed previously for rat livers to human liver pieces and results in a large yield of hepatocytes with a viability of 77±10%. The main difference in this procedure is the process of cannulization of the blood vessels. Further, the method described here can also be applied to livers from other species with comparable liver or blood vessel sizes.  相似文献   

7.
Using of isolated hepatocytes for investigation of the effects of hypothermia, it has been demonstrated that sucrose-base solution provides of maintenance of the energetic parameters (level of ATP, glucose synthesis, rate of gluconeogenesis) within 48 hrs of storage at 4 degrees C. It efficiency was compared with effect on the energetic status of isolated hepatocytes widely used preservation solution--solution of University Wisconsin (UW). After long-term of cold storage of isolated hepatocytes (72 hrs) at 4 degrees C in both solutions, it has been shown sharp decrease of ATP level (on two time). Viability of the liver cells (in both cases) was practically without change.  相似文献   

8.
The utilization of human hepatocytes for biomedical research, drug discovery, and treatment of liver diseases is hindered by the limited availability of donated livers and the variability of their derived hepatocytes. Human embryonic stem cells (hESCs) are pluripotent and provide a unique, unlimited resource for human hepatocytes. However, differentiation of hESCs to hepatocytes remains a challenge. We have developed a multistage procedure by which hESCs can be directly differentiated to hepatocyte-like cells without embryoid body formation and the requirement of sodium butyrate. The hESC-derived hepatocyte-like cells (HLCs) exhibited characteristic hepatocyte morphology, expressed hepatocyte markers, including alpha-fetoprotein, albumin, and hepatocyte nuclear factor 4alpha, and possessed hepatocyte-specific activities, such as p450 metabolism, albumin production, glycogen storage, and uptake and excretion of indocyanine green. Hepatocyte growth factor was found to play a positive role in promoting hepatocyte differentiation. Our differentiation system has shown that hESCs can be differentiated to hepatocyte-like cells capable of executing a range of hepatocyte functions. Therefore, it presents a proof-of-principle of potential applications of using the hESC-derived hepatocytes. Additionally, the hESC-derived HLCs provide a unique model to study the mechanisms involved in human hepatocyte differentiation and liver function.  相似文献   

9.
10.
Isolated hepatocytes - past, present and future   总被引:4,自引:0,他引:4  
The first technique for large-scale preparation of isolated hepatocytes was described in 1953 and involved perfusion of rat liver under pressure with a Ca2+-free solution containing a chelating agent. Various modifications of this technique were in use over the next ten years, until it was demonstrated that cells prepared in this manner were grossly damaged, losing most of their cytoplasmic enzymes during the preparative procedure. The successful preparation of intact isolated hepatocytes by collagenase-treatment of liver was achieved in 1967, and the widespread use of intact hepatocyte suspensions was accelerated by the development soon after of high-yield preparative techniques involving perfusion of the liver with a medium containing collagenase.The introduction of the isolated hepatocyte preparation has enabled experimental studies that otherwise would not be feasible. Important advances have been the use of cultured hepatocytes, frequently of human origin, for the investigation of the metabolism and toxicology of potential therapeutic agents. Success in this field has been achieved through the steady improvement in techniques for the maintenance in culture of differentiated hepatocytes, and in particular their cytochrome P450 complexes. Another area showing considerable promise is the employment of hepatocytes, generally from a porcine source, in temporary support systems for patients with acute liver failure. Our own studies have concentrated on the demonstration of long-range interactions between hepatocyte compartments which suggest that energy transfer between cell compartments can take place without ATP turnover.  相似文献   

11.
Protein secretion of human cultured liver cells   总被引:1,自引:0,他引:1  
Liver cells have many functions, and one of which is a production of plasma proteins. Therefore, studies on synthesis and production of plasma proteins from hepatocytes are very important for the recognition of various hepatic dysfunctions, clinically. Of late years, a lot of the complex mechanism of protein synthesis and--secretion was elucidated by using a technique of liver cell culture, for example, primary monolayer culture by freshly isolated hepatocytes and cloned cell culture derived from hepatocellular carcinoma. This paper described the results of our observations and other researchers, and then discussed the point of production of human major plasma proteins using the above culture methods, such as albumin, alpha-fetoprotein and transferrin. Furthermore, we showed statistically that half of twenty-six human hepatoma cell lines established until 1988 in Japan, had already lost their secretory potencies of major plasma proteins in vitro.  相似文献   

12.
Study of hepatocyte differentiation using embryonic stem cells   总被引:9,自引:0,他引:9  
The liver has many crucial functions including metabolizing dietary molecules, detoxifying compounds, and storing glycogen. The hepatocytes, comprising most of the liver organ, progressively modify their gene expression profile during the fetal development according to their roles in the different phases of development. Embryonic stem (ES) cells serve as a major tool in understanding liver development. These cells may also serve as a source of hepatic cells for cellular therapy. In this review, we aim to summarize the research that has been performed in the field of hepatocyte differentiation from mouse and human ES cells. We discuss the various methodologies for the differentiation of ES cells towards hepatic cells using either spontaneous or directed differentiation protocols. Although many protocols for differentiating ES cells to hepatic cells have been developed, the analysis of their status is not trivial and can lead to various conclusions. Hence, we discuss the issues of analyzing hepatocytes by means of the specificity of the markers for hepatocytes and the status of the cells as fetal or adult hepatocytes.  相似文献   

13.
Human hepatocytes are the model of choice for pharmacotoxicological studies, but their acquisition is often problematic due to ethical and logistical difficulties. The UK Human Tissue Bank is a not-for-profit organisation that acquires and processes human tissue, with a specialist interest in the isolation of human hepatocytes. A recent in-house survey of the processing of liver tissue over 1 year revealed that freshly isolated hepatocytes were underutilised due to mismatched consumer demand, despite the published need for them. We present the results of a telephone survey to investigate the reasons behind this paradox. This survey highlighted some problem areas, including "out of hours" availability of cells and personnel difficulties, but overall, demonstrated the value of such a service, with numerous researchers taking advantage of available good quality human hepatocytes. Although further work is required in optimising long-term storage protocols through cryopreservation, we have demonstrated that tissue handling of this type can be successful and beneficial to the pharmaceutical and biotechnology industries.  相似文献   

14.
The processes of polyploidization in normal human liver parenchyma from 155 individuals aged between 1 day and 92 years were investigated by Feulgen-DNA cytophotometry. It was shown that polyploid hepatocytes appear in individuals from 1 to 5 years old. Up to the age of 50 years the accumulation rate of binucleate and polyploid cells is very slow, but subsequently hepatocyte polyploidization is intensified, and in patients aged 86–92 years the relative number of cells with polyploid nuclei is about 27%. Only a few hepatocytes in the normal human liver reach 16C and 8C×2 ploidy levels for mononucleate and binucleate cells respectively. Using a mathematical modeling method, it was shown that during postnatal liver growth the polyploidization process in human liver is similar to that in the rat, and that polyploid cells are formed mainly from binucleate cells. As in rats, prior to an increase in ploidy level, diploid human hepatocytes can pass several times through the usual mitotic cycles maintaining their initial ploidy level. After birth, only one in ten hepatocytes starting DNA synthesis enters the polyploidization process. At maturity about 60% of 2C-hepatocytes starting DNA synthesis divide by conventional mitosis, the rest dividing by acytokinetic mitosis leading to the formation of binucleate cells. During ageing the probability of hepatocyte polyploidization increases and in this period there are two polyploid or binucleate cells for every diploid dividing by conventional mitosis.  相似文献   

15.
Successful and consistent isolation of primary human hepatocytes remains a challenge for both cell-based therapeutics/transplantation and laboratory research. Several centres around the world have extensive experience in the isolation of human hepatocytes from non-diseased livers obtained from donor liver surplus to surgical requirement or at hepatic resection for tumours. These livers are an important but limited source of cells for therapy or research. The capacity to isolate cells from diseased liver tissue removed at transplantation would substantially increase availability of cells for research. However no studies comparing the outcome of human hepatocytes isolation from diseased and non-diseased livers presently exist. Here we report our experience isolating human hepatocytes from organ donors, non-diseased resected liver and cirrhotic tissue. We report the cell yields and functional qualities of cells isolated from the different types of liver and demonstrate that a single rigorous protocol allows the routine harvest of good quality primary hepatocytes from the most commonly accessible human liver tissue samples.  相似文献   

16.
Hepatocyte transplantation is considered a potential treatment for liver diseases and a bridge for patients awaiting liver transplantation, but its application has been hampered by a limited supply of hepatocytes. Embryonic stem (ES) cells established from early mouse and human embryos are pluripotent, and proliferate indefinitely in an undifferentiated state in vitro. Since differentiation from ES cells seems to recapitulate early embryonic development, if hepatocytes could be efficiently generated in vitro, ES cells might become a source of transplantable hepatocytes for cell replacement therapy. Hepatocytes have been generated from ES cells in vitro, and the hepatocytes differentiated from ES cells have been found to express many hepatocyte-related genes and perform hepatic functions. However, it remains unclear whether the hepatocytes differentiated from ES cells are derived from definitive endoderm or primitive endoderm. Because visceral endoderm, which expresses many hepatocyte-related genes, is derived from primitive endoderm and is fated to form extraembryonic yolk sac tissues, not to form hepatocytes, ES cells must be directed to a definitive endoderm lineage in vitro. This article discusses the differentiation of ES cells into hepatocytes in vitro in comparison with early embryogenesis, and describes the efficacy of ES cell-derived hepatocyte transplantation.  相似文献   

17.
18.
The liver stages of malaria are clinically silent but have a central role in the Plasmodium life cycle. Liver stages of the parasite containing thousands of merozoites grow inside hepatocytes for several days without triggering an inflammatory response. We show here that Plasmodium uses a PEXEL/VTS motif to introduce the circumsporozoite (CS) protein into the hepatocyte cytoplasm and a nuclear localization signal (NLS) to enter its nucleus. CS outcompetes NFkappaB nuclear import, thus downregulating the expression of many genes controlled by NFkappaB, including those involved in inflammation. CS also influences the expression of over one thousand host genes involved in diverse metabolic processes to create a favorable niche for the parasite growth. The presence of CS in the hepatocyte enhances parasite growth of the liver stages in vitro and in vivo. These findings have far reaching implications for drug and vaccine development against the liver stages of the malaria parasite.  相似文献   

19.
胚胎干细胞分化为肝细胞的研究进展   总被引:6,自引:0,他引:6  
目前 ,细胞移植作为终末期肝病的辅助治疗方法 ,移植的细胞必须满足在受体肝脏中存活、增殖并可分化为成熟肝细胞两个重要条件 ,但目前应用的肝细胞来源有限 ,其功能随着培养时间的延长而逐渐下降等问题限制了这一治疗策略的广泛开展。作为具有发育全能性和无限增殖能力的细胞 ,胚胎干细胞向肝细胞的分化研究近年来引起了广泛的关注 ,并取得了较大的进展 ,寻找合适、高效的分化诱导方法是目前研究的热点之一。胚胎干细胞向肝细胞的分化研究既可以为临床细胞替代治疗提供合适的细胞来源 ,也可以在药物评估和肝脏发育分化基础研究方面起到重要的作用。通过概括肝脏和拟胚体分化发育的分子机制 ,对体外胚胎干细胞向肝细胞分化的几种诱导体系作了介绍 ,并对分化肝细胞的应用前景和存在的问题进行了讨论。  相似文献   

20.
Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice   总被引:2,自引:0,他引:2  
Mice that could be highly repopulated with human hepatocytes would have many potential uses in drug development and research applications. The best available model of liver humanization, the uroplasminogen-activator transgenic model, has major practical limitations. To provide a broadly useful hepatic xenorepopulation system, we generated severely immunodeficient, fumarylacetoacetate hydrolase (Fah)-deficient mice. After pretreatment with a urokinase-expressing adenovirus, these animals could be highly engrafted (up to 90%) with human hepatocytes from multiple sources, including liver biopsies. Furthermore, human cells could be serially transplanted from primary donors and repopulate the liver for at least four sequential rounds. The expanded cells displayed typical human drug metabolism. This system provides a robust platform to produce high-quality human hepatocytes for tissue culture. It may also be useful for testing the toxicity of drug metabolites and for evaluating pathogens dependent on human liver cells for replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号