首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zearalenone, a secondary metabolite produced by several plant-pathogenic fungi of the genus Fusarium, has high estrogenic activity in vertebrates. We developed a Saccharomyces cerevisiae bioassay strain that we used to identify plant genes encoding UDP-glucosyltransferases that can convert zearalenone into zearalenone-4-O-glucoside (ZON-4-O-Glc). Attachment of the glucose moiety to zearalenone prevented the interaction of the mycotoxin with the human estrogen receptor. We found that two of six clustered, similar UGT73C genes of Arabidopsis thaliana encode glucosyltransferases that can inactivate zearalenone in the yeast bioassay. The formation of glucose conjugates seems to be an important plant mechanism for coping with zearalenone but may result in significant amounts of "masked" zearalenone in Fusarium-infected plant products. Due to the unavailability of an analytical standard, the ZON-4-O-Glc is not measured in routine analytical procedures, even though it can be converted back to active zearalenone in the digestive tracts of animals. Zearalenone added to yeast transformed with UGT73C6 was converted rapidly and efficiently to ZON-4-O-Glc, suggesting that the cloned UDP-glucosyltransferase could be used to produce reference glucosides of zearalenone and its derivatives.  相似文献   

2.
The work at hand describes the production of the zearalenone (ZON) metabolites zearalenone-4-glucoside (ZON-4G), a-zearalenol-4-glucoside (oc-ZOL-4G) and ß-zearalenol-4-glucoside (ß-ZOL-4G). In a first step a genetically modified yeast strain, expressing theArabidopsis thaliana UDP-glu-cosyltransferase UGT73C6, was treated with ZON to produce ZON-4G. The substance was purified by solid phase extraction and subsequent reversed phase preparative HPLC prior to the reduction with sodium borohydride to yield 0C-ZOL-4G and ß-ZOL-4G. The identity and purity of the substances were confirmed by13C-and1H-NMR as well as by HPLC-UV. In total, 50 mg of ZON were used to produce 5 mg of a-ZOL-4G with a purity of 98%, 6 mg of ß-ZOL-4G with a purity of 99% and 5 mg of ZON-4G with a purity of 99%.  相似文献   

3.
First results of the GEN-AU pilot project “Fusarium virulence and plant resistance mechanisms” are reported. Employing genetically engineered yeast strains we have been able to clone genes from the model plantArabidopsis thaliana encoding UDP-glucosyltransferases which can inactivate deoxynivalenol (DON) and zearalenone (ZON). The structure of the metabolites produced by the transformed yeast strains were determined by LC-MS/MS as DON-3O-glucoside and ZON-4O-glucoside, respectively. ZON and derivatives added to glucosyltransferase expressing yeast cultures are converted into the corresponding glucosides in very high yield, opening an efficient way to produce reference materials for these masked mycotoxins. Presented at the 26th Mykotoxin-Workshop in Herrsching, Germany, May 17–19, 2004 Financial support Christian Doppler Forschungsgesellschaft and Austrian Genome Research programme (GEN-AU)  相似文献   

4.
Zearalenone, a mycotoxin produced by several Fusarium spp., is most commonly found as a contaminant in stored grain and has chronic estrogenic effects on mammals. Zearalenone is a polyketide derived from the sequential condensation of multiple acetate units by a polyketide synthase (PKS), but the genetics of its biosynthesis are not understood. We cloned two genes, designated ZEA1 and ZEA2, which encode polyketide synthases that participate in the biosynthesis of zearalenone by Gibberella zeae (anamorph Fusarium graminearum). Disruption of either gene resulted in the loss of zearalenone production under inducing conditions. ZEA1 and ZEA2 are transcribed divergently from a common promoter region. Quantitative PCR analysis of both PKS genes and six flanking genes supports the view that the two polyketide synthases make up the core biosynthetic unit for zearalenone biosynthesis. An appreciation of the genetics of zearalenone biosynthesis is needed to understand how zearalenone is synthesized under field conditions that result in the contamination of grain.  相似文献   

5.
《Process Biochemistry》2014,49(5):813-820
Ginsenosidase type I from Aspergillus niger g.48 can hydrolyze the 3-O- and 20-O-multi-glycosides of PPD-type ginsenosides. The enzyme molecular weight is approximately 74 kDa. When hydrolyzing the glycosides of Rb1, Rb3, Rb2 and Rc, the structures of which only differ in their terminal 20-O-glycosides, ginsenosidase type I hydrolyzes both the 3-O- and 20-O-glycosides of Rb1 and Rb3 using two pathways, but the enzyme first hydrolyzes the 3-O-glucosides of Rb2 and Rc using one pathway. One pathway of Rb1 hydrolyzes the 20-O-Glc of Rb1 to Rd→F2→C-K; another pathway hydrolyzes the 3-O-Glc of Rb1 to Gyp17→Gyp75→C-K. Two hydrolysis pathways are used to hydrolyze the 20-O-Xyl and the 3-O-Glc of Rb3. According to the enzyme reaction parameters Km, Vmax and V0 at a 10 mM substrate concentration, the enzyme hydrolysis velocity values decrease in the following order: the 20-O-Xyl of Rb3→Rd> the 20-O-Glc of Rb1→Rd> the 3-O-Glc of Rc> the 3-O-Glc of Rb2> the 3-O-Glc of Rd> the 3-O-Glc of Rb3→C-Mx1> the 3-O-Glc of Rb1→Gyp17> the 3-O-Glc of F2> the 3-O-Glc of 20(S)-Rg3.  相似文献   

6.

Key message

This study identifies six UGT73Cs all able to glucosylate sapogenins at positions 3 and/or 28 which demonstrates that B. vulgaris has a much richer arsenal of UGTs involved in saponin biosynthesis than initially anticipated.

Abstract

The wild cruciferous plant Barbarea vulgaris is resistant to some insects due to accumulation of two monodesmosidic triterpenoid saponins, oleanolic acid 3-O-β-cellobioside and hederagenin 3-O-β-cellobioside. Insect resistance depends on the structure of the sapogenin aglycone and the glycosylation pattern. The B. vulgaris saponin profile is complex with at least 49 saponin-like metabolites, derived from eight sapogenins and including up to five monosaccharide units. Two B. vulgaris UDP-glycosyltransferases, UGT73C11 and UGT73C13, O-glucosylate sapogenins at positions 3 and 28, forming mainly 3-O-β-d-glucosides. The aim of this study was to identify UGTs responsible for the diverse saponin oligoglycoside moieties observed in B. vulgaris. Twenty UGT genes from the insect resistant genotype were selected and heterologously expressed in Nicotiana benthamiana and/or Escherichia coli. The extracts were screened for their ability to glycosylate sapogenins (oleanolic acid, hederagenin), the hormone 24-epibrassinolide and sapogenin monoglucosides (hederagenin and oleanolic acid 3-O-β-d-glucosides). Six UGTs from the UGT73C subfamily were able to glucosylate both sapogenins and both monoglucosides at positions 3 and/or 28. Some UGTs formed bisdesmosidic saponins efficiently. At least four UGT73C genes were localized in a tandem array with UGT73C11 and possibly UGT73C13. This organization most likely reflects duplication events followed by sub- and neofunctionalization. Indeed, signs of positive selection on several amino acid sites were identified and modelled to be localized on the UGT protein surface. This tandem array is proposed to initiate higher order bisdesmosidic glycosylation of B. vulgaris saponins, leading to the recently discovered saponin structural diversity, however, not directly to known cellobiosidic saponins.
  相似文献   

7.
A cDNA encoding UDP-glucose: formononetin 7-O-glucosyltransferase, designated UGT73F1, was cloned from yeast extract-treated Glycyrrhiza echinata L. cell-suspension cultures using probes from Scutellaria baicalensis UDP-glucose: flavonoid 7-O-glucosyltransferase. The open reading frame of the UGT73F1 cDNA encodes a 441-amino-acid protein with a predicted molecular mass of 48.7 kDa. The deduced amino acid sequence showed that the protein is related to the stress-inducible glucosyltransferases. UGT73F1 mRNA was not detected in untreated G. echinata cultures but was transiently induced by treatment with yeast extract. Recombinant UGT73F1 was expressed as a histidine-tag fusion protein in Escherichia coli and purified to near homogeneity by nickel chelate chromatography. The purified recombinant enzyme was selective for isoflavonoid, formononetin and daidzein as substrates, while flavonoids and various tested non-flavonoid compounds were poor substrates.Abbreviations GT UDP-glycosyltransferase - rUGT73F1 recombinant UGT73F1 - UBGT: UDP-glucose: baicalein 7-O-glucosyltransferase The nucleotide sequence data reported in this paper will appear in the DDBJ/EMBL/GenBank nucleotide sequence databases with the accession number AB098614.  相似文献   

8.
Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4′-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4′-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49 % identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC–MS and HPLC, which confirmed its specificity for genistein 4′-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.  相似文献   

9.
Zearalenone is a mycotoxin with estrogenic effects on mammals that is produced by several species of Fusarium. We found that zearalenone and its derivatives inhibit the growth of filamentous fungi on solid media at concentrations of ≤10 μg/ml. The fungitoxic effect declined in the order zearalenone > α-zearalenol > β-zearalenol. The mycoparasitic fungus Gliocladium roseum produces a zearalenone-specific lactonase which catalyzes the hydrolysis of zearalenone, followed by a spontaneous decarboxylation. The growth of G. roseum was not inhibited by zearalenone, and the lactonase may protect G. roseum from the toxic effects of this mycotoxin. We inactivated zes2, the gene encoding zearalenone lactonase in G. roseum, by inserting a hygromycin resistance cassette into the coding sequence of the gene by means of Agrobacterium tumefaciens-mediated genetic transformation. The zes2 disruption mutants could not hydrolyze the lactone bond of zearalenone and were more sensitive to zearalenone. These data are consistent with a hypothesis that resorcylic acid lactones exemplified by zearalenone act to reduce growth competition by preventing competing fungi from colonizing substrates occupied by zearalenone producers and suggest that they may play a role in fungal defense against mycoparasites.  相似文献   

10.
Zearalenone (ZON) is a non-steroidal estrogenic mycotoxin produced by plant pathogenic species ofFusarium. As a consequence of infection withF. culmorum andF. graminearum, ZON can be found in cereals and derived food products. Several countries have established monitoring programs and guidelines for ZON levels in grain intended for human consumption and animal feed. We have developed a sensitive yeast bioassay allowing detection of the estrogenic activity of ZON in cereal extracts without requiring further clean up steps. The high sensitivity makes this assay suitable for low cost monitoring of contamination of small grain cereals with estrogenicFusarium mycotoxins, but also attractive as a tool for basic research. We have successfully used yeast indicator strains to screen for mutants ofF. graminearum which no longer produce detectable amounts of ZON, and have identified a plant cDNA encoding a ZON detoxification enzyme. Presented at the 25th Mykotoxin Workshop in Giessen, Germany, May 19–21, 2003  相似文献   

11.
Zearalenone (ZON) is a nonsteroidal estrogenic mycotoxin produced by plant-pathogenic species of Fusarium. As a consequence of infection with Fusarium culmorum and Fusarium graminearum, ZON can be found in cereals and derived food products. Since ZON is suspected to be a cause of human disease, including premature puberty syndrome, as well as hyperestrogenism in farm animals, several countries have established monitoring programs and guidelines for ZON levels in grain intended for human consumption and animal feed. We developed a low-cost method for monitoring ZON contamination in grain based on a sensitive yeast bioassay. The indicator Saccharomyces cerevisiae strain YZRM7 is unable to grow unless an engineered pyrimidine biosynthetic gene is activated by the expressed human estrogen receptor in the presence of exogenous estrogenic substances. Deletion of the genes encoding ATP-binding cassette (ABC) transporters Pdr5p and Snq2p increases net ZON uptake synergistically. Less than 1 μg of ZON per liter of medium is sufficient to allow growth of the indicator strain. To prevent interference with pyrimidines potentially present in biological samples, we also disrupted the genes FUR1 and URK1, blocking the pyrimidine salvage pathway. The bioassay strain YZRM7 allows qualitative detection and quantification of total estrogenic activity in cereal extracts without requiring further cleanup steps. Its high sensitivity makes this assay suitable for low-cost monitoring of contamination of maize and small grain cereals with estrogenic Fusarium mycotxins.  相似文献   

12.
13.
Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests, while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-β-d-Glc hederagenin strongly deterred feeding, while 3-O-β-d-Glc oleanolic acid only had a minor effect, showing that hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin biosynthesis.Triterpenoid saponins are a heterogeneous group of bioactive metabolites found in many species of the plant kingdom. The general conception is that saponins are involved in plant defense against antagonists such as fungi (Papadopoulou et al., 1999), mollusks (Nihei et al., 2005), and insects (Dowd et al., 2011). Saponins consist of a triterpenoid aglycone (sapogenin) linked to usually one or more sugar moieties. This combination of a hydrophobic sapogenin and hydrophilic sugars makes saponins amphiphilic and enables them to integrate into biological membrane systems. There, they form complexes with membrane sterols and reorganize the lipid bilayer, which may result in membrane damage (Augustin et al., 2011).However, our knowledge of the biosynthesis of saponins, and the genes and enzymes involved, is limited. The current conception is that the precursor 2,3-oxidosqualene is cyclized to a limited number of core structures, which are subsequently decorated with functional groups, and finally activated by adding glycosyl groups (Augustin et al., 2011). These key steps are considered to be catalyzed by three multigene families: (1) oxidosqualene cyclases (OSCs) forming the core structures, (2) cytochromes P450 adding the majority of functional groups, and (3) family 1 glycosyltransferases (UGTs) adding sugars. This allows for a vast structural complexity, some of which probably evolved by sequential gene duplication followed by functional diversification (Osbourn, 2010). A major challenge is thus to understand the processes of saponin biosynthesis, which structural variants of saponins play a role in defense against biotic antagonists, and how saponin biosynthesis evolved in different plant taxa. This knowledge is also of interest for biotechnological production and the use of saponins as protection agents against agricultural pests as well as for pharmacological and industrial uses as bactericides (De Leo et al., 2006), anticancerogens (Musende et al., 2009), and adjuvants (Sun et al., 2009).Barbarea vulgaris (winter cress) is a wild crucifer from the Cardamineae tribe of the Brassicaceae family. It is the only species in this economically important family known to produce saponins. B. vulgaris has further diverged into two separate evolutionary lineages (types; Hauser et al., 2012; Toneatto et al., 2012) that produce different saponins, glucosinolates, and flavonoids (Agerbirk et al., 2003b; Dalby-Brown et al., 2011; Kuzina et al., 2011). Saponins of the one plant type make plants resistant to the yellow-striped flea beetle (Phyllotreta nemorum), diamondback moth (Plutella xylostella), and other important crucifer specialist herbivores (Renwick, 2002); therefore, it has been suggested to utilize such plants as a trap crop to diminish insect damage (Badenes-Perez et al., 2005). The other plant type is not resistant to these herbivores. B. vulgaris, therefore, is ideal as a model species to study saponin biosynthesis, insect resistance, and its evolution, as we can contrast genes, enzymes, and their products between closely related but divergent plant types.Insect resistance of the one plant type, called G because it has glabrous leaves, correlates with the content of especially hederagenin cellobioside, oleanolic acid cellobioside, 4-epi-hederagenin cellobioside, and gypsogenin cellobioside (Shinoda et al., 2002; Agerbirk et al., 2003a; Kuzina et al., 2009; Fig. 1). These saponins are absent in the susceptible plant type, called P because it has pubescent leaves, which contains saponins of unknown structures and function (Kuzina et al., 2011). The sapogenins (aglycones) of the resistance-causing saponins hederagenin and oleanolic acid cellobioside do not deter feeding by P. nemorum, which highlights the importance of glycosylation of saponins for resistance (Nielsen et al., 2010). Therefore, the presence or absence of sapogenin glycosyltransferases could be a determining factor for the difference in resistance between the insect resistant G-type and the susceptible P-type of B. vulgaris.Open in a separate windowFigure 1.Chemical structures of the four known G-type B. vulgaris saponins that correlate with resistance to P. nemorum and other herbivores. The cellobioside and sapogenin parts of the saponin are underlined, and relevant carbon positions are numbered.Some P. nemorum genotypes are resistant to the saponin defense of B. vulgaris (Nielsen, 1997b, 1999). Resistance is coded by dominant R genes (Nielsen et al., 2010; Nielsen 2012): larvae and adults of resistant genotypes (RR or Rr) are able to feed on G-type foliage and utilize B. vulgaris as host plant (de Jong et al., 2009), whereas larvae of the susceptible genotype (rr) die and adult beetles stop feeding on G-type foliage. Larvae and adults of all known P. nemorum genotypes can feed on P-type B. vulgaris (Fig. 2).Open in a separate windowFigure 2.Feeding behavior of adult P. nemorum that are either susceptible (ST) or resistant (AK) toward the saponin-based defense of G-type B. vulgaris; the P-type produces different saponins and is not resistant against P. nemorum. Potential feeding is shown by green arrows, and termination of feeding briefly after initiation is indicated by a red dashed arrow. Larvae of the ST line die if fed on G-type plants.In this study, we asked which enzymes are involved in glucosylation of sapogenins in B. vulgaris, whether saponins with a single C3 glucosyl group are biologically active, and whether the difference between the insect resistant and susceptible types of B. vulgaris is caused by different glucosyltransferases.We report the identification of two UDP-glycosyltransferases, UGT73C10 and UGT73C11, which have high catalytic activity and substrate specificity and regiospecificity for catalyzing 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. The products, 3-O-β-d-glucopyranosyl hederagenin and 3-O-β-d-glucopyranosyl oleanolic acid, are predicted precursors of hederagenin and oleanolic acid cellobioside, respectively. The expression patterns of UGT73C10 and UGT73C11 in different organs of B. vulgaris correlate with saponin abundance, and monoglucosylated sapogenins, especially 3-O-β-d-glucopyranosyl hederagenin, deter feeding by P. nemorum. Our results thus show that glucosylation with even a single glucosyl group activates the resistance function of these sapogenins. However, since the UGTs are present and active in both the insect-resistant and -susceptible types of B. vulgaris, we cannot explain the difference in resistance by different glucosylation abilities. Instead, the difference between the susceptible and resistant types must be determined at an earlier stage in saponin biosynthesis.  相似文献   

14.
Glycosylation is one of the key modification steps for plants to produce a broad spectrum of flavonoids with various structures and colors. A survey of flavonoids in the blue flowers of Veronica persica Poiret (Lamiales, Scrophulariaceae), which is native of Eurasia and now widespread worldwide, led to the identification of highly glycosylated flavonoids, namely delphinidin 3-O-(2-O-(6-O-p-coumaroyl-glucosyl)-6-O-p-coumaroyl-glucoside)-5-O-glucoside (1) and apigenin 7-O-(2-O-glucuronosyl)-glucuronide (2), as two of its main flavonoids. Interestingly, the latter flavone glucuronide (2) caused a bathochromic shift on the anthocyanin (1) toward a blue hue in a dose-dependent manner, showing an intermolecular co-pigment effect. In order to understand the molecular basis for the biosynthesis of this glucuronide, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT88D8), based on the structural similarity to flavonoid 7-O-glucuronosyltransferases (F7GAT) from Lamiales plants. Enzyme assays showed that the recombinant UGT88D8 protein catalyzes the 7-O-glucuronosylation of apigenin and its related flavonoids with preference to UDP-glucuronic acid as a sugar donor. Furthermore, we identified and functionally characterized a cDNA encoding another UGT, UGT94F1, as the anthocyanin 3-O-glucoside-2″-O-glucosyltransferase (A3Glc2″GlcT), according to the structural similarity to sugar-sugar glycosyltransferases classified to the cluster IV of flavonoid UGTs. Preferential expression of UGT88D8 and UGT94F1 genes in the petals supports the idea that these UGTs play an important role in the biosynthesis of key flavonoids responsible for the development of the blue color of V. persica flowers.  相似文献   

15.
There are substantial genotypic differences in the levels of flavonol glycosides (FGs) in soybean leaves. The first objective of this study was to identify and locate genes responsible for FG biosynthesis in the soybean genome. The second objective was to clone and verify the function of these candidate genes. Recombinant inbred lines (RILs) were developed by crossing the Kitakomachi and Koganejiro cultivars. The FGs were separated by high performance liquid chromatography (HPLC) and identified. The FGs of Koganejiro had rhamnose at the 6″-position of the glucose or galactose bound to the 3-position of kaempferol, whereas FGs of Kitakomachi were devoid of rhamnose. Among the 94 RILs, 53 RILs had HPLC peaks classified as Koganejiro type, and 41 RILs had peaks classified as Kitakomachi type. The segregation fitted a 1:1 ratio, suggesting that a single gene controls FG composition. SSR analysis, linkage mapping and genome database survey revealed a candidate gene in the molecular linkage group O (chromosome 10). The coding region of the gene from Koganejiro, designated as GmF3G6″Rt-a, is 1,392 bp long and encodes 464 amino acids, whereas the gene of Kitakomachi, GmF3G6″Rt-b, has a two-base deletion resulting in a truncated polypeptide consisting of 314 amino acids. The recombinant GmF3G6″Rt-a protein converted kaempferol 3-O-glucoside to kaempferol 3-O-rutinoside and utilized 3-O-glucosylated/galactosylated flavonols and UDP-rhamnose as substrates. GmF3G6″Rt-b protein had no activity. These results indicate that GmF3G6″Rt encodes a flavonol 3-O-glucoside (1 → 6) rhamnosyltransferase and it probably corresponds to the Fg2 gene. GmF3G6″Rt was designated as UGT79A6 by the UGT Nomenclature Committee.  相似文献   

16.
The dietary bioavailability of the isoflavone genistein is decreased in older rats compared to young adults. Since flavonoids are metabolized extensively by the UDP-glucuronosyltransferases (UGTs), we hypothesized that UGT flavonoid conjugating activity changes with age. The effect of age on flavonoid glucuronidation was determined using hepatic microsomes from male F344 rats. Kinetic models of UGT activity toward the flavonol quercetin and the isoflavone genistein were established using pooled hepatic microsomal fractions of rats at different ages, and glucuronidation rates were determined using individual samples. Intrinsic clearance (Vmax/Km) values in 4-, 18- and 28-month-old rats were 0.100, 0.078 and 0.087 ml/min/mg for quercetin-7-O-glucuronide; 0.138, 0.133 and 0.088 for quercetin-3′-O-glucuronide; and 0.075, 0.077 and 0.057 for quercetin-4′-O-glucuronide, respectively. While there were no differences in formation rates of total quercetin glucuronides in individual samples, the production of the primary metabolite, quercetin-7-O-glucuronide, at 30 μM quercetin concentration was increased from 3.4 and 3.1 nmol/min/mg at 4 and 18 months to 3.8 nmol/min/mg at 28 months, while quercetin-3′-O-glucuronide formation at 28 months declined by a similar degree (P≤.05). At 30 and 300 μM quercetin concentration, the rate of quercetin-4′-O-glucuronide formation peaked at 18 months at 0.9 nmol/min/mg. Intrinsic clearance values of genistein 7-O-glucuronide increased with age, in contrast to quercetin glucuronidation. Thus, the capacity for flavonoid glucuronidation by rat liver microsomes is dependent on age, UGT isoenzymes and flavonoid structure.  相似文献   

17.
Yu  Yuanshan  Qiu  Liping  Wu  Hui  Tang  Yuqian  Lai  Furao  Yu  Yigang 《World journal of microbiology & biotechnology》2011,27(11):2675-2681
Zearalenone is a mycotoxin mainly produced by Fusarium mold, which has been associated with hyperestrogenism and other reproductive disorders in pigs, sheep, and other farm animals. Since zearalenone engendered economic losses to farm animal production, its detoxification in contaminated grains or by-products would be advantageous. In this study, enzymes from the Acinetobacter sp. SM04 extracellular extracts of liquid cultures were isolated by Sephadex G-100 column, and an active fraction capable of efficiently degrading zearalenone was obtained. Zearalenone could be oxidized into smaller estrogenic products by the active fraction, and two intermediate products, ZEN-1([M-H] at m/z 489) and ZEN-2([M-H] at m/z 405), were found. Zearalenone degradation activity of the active fraction was significantly inhibited by low oxygen gas content, protease, SDS, and EDTA treatment. Further, enzymes in the active fraction were analysed by SDS–PAGE and MALDI-TOF/TOF/MS, and three proteins were found that matched the database for Acinetobacter genus with great homology. They were identified as peroxiredoxin, a possible cytochrome and a putative fimbrial protein precursor.  相似文献   

18.
Flavonoids accumulate in plant vacuoles usually as O-glycosylated derivatives, but several species can also synthesize flavonoid C-glycosides. Recently, we demonstrated that a flavanone 2-hydroxylase (ZmF2H1, CYP93G5) converts flavanones to the corresponding 2-hydroxy derivatives, which are expected to serve as substrates for C-glycosylation. Here, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT708A6), and its activity was characterized by in vitro and in vivo bioconversion assays. In vitro assays using 2-hydroxyflavanones as substrates and in vivo activity assays in yeast co-expressing ZmF2H1 and UGT708A6 show the formation of the flavones C-glycosides. UGT708A6 can also O-glycosylate flavanones in bioconversion assays in Escherichia coli as well as by in vitro assays with the purified recombinant protein. Thus, UGT708A6 is a bifunctional glycosyltransferase that can produce both C- and O-glycosidated flavonoids, a property not previously described for any other glycosyltransferase.  相似文献   

19.
The major flavonoids in the white florets of chamomile (Chamomilla recutita [L.] Rauschert) were rapidly purified using a combination of polyamide solid-phase extraction and preparative HPLC. From the combined LC/MS, LC/MS/MS, and NMR data the apigenin glucosides were identified as apigenin 7-O-glucoside (Ap-7-Glc), Ap-7-(6″-malonyl-Glc), Ap-7-(6″-acetyl-Glc), Ap-7-(6″-caffeoyl-Glc), Ap-7-(4″-acetyl-Glc), Ap-7-(4″-acetyl,6″-malonyl-Glc), and a partially characterised apigenin-7-(mono-acetyl/mono-malonylglucoside) isomer. Malonyl and caffeoyl derivatives of Ap-7-Glc have not previously been identified in chamomile. The two mono-acetyl/mono-malonyl flavonoids have not previously been reported in any plant species. These acylated glucosides are unstable and degrade to form acetylated compounds or Ap-7-Glc. The degradation products formed are dependent on the extraction and storage conditions, i.e. temperature, pH and solvent.  相似文献   

20.
Glycosylation plays a major role in the chemical diversity of flavonoids. The wide diversity of the family-1 glycosyltransferase (UGT) impairs the determination of the biochemical function solely from its primary sequence. Here we combined differential expression and target metabolomic analysis in various Crocus species to identify a gene that is key in determining the flavonoid composition of Crocus species that belong to the Crocus series. UGT703B1 recognizes isorhamnetin and kaempferol as substrates in vitro. In addition, UGT703B1 expression was found to be highly correlated with the presence of kaempferol 7-O-biglucoside-3-O-β-glucoside and isorhamnetin-3,7-O-diglucoside. These flavonols were present in C. sativus and C. cartwrightianus albus, both from series Crocus but absent in Crocus species from the other series analyzed. Further, the presence of both flavonols was associated with the expression of UGT703B1, and this expression was correlated with the presence of the UGT703B1 coding gene, with the exception of C. cancellatus, whose genomic sequence was present but contained a shorter intronic sequence and promoter alterations, suggesting the presence of regulatory sequences in the deleted part of that intron and promoter important for UGT703B1 expression. Overall, the data obtained supports the involvement of UGT703B1 in the formation of specific kaempferol and isorhamnetin glucosides, while demonstrating that the integration of metabolomic and differential expression analysis is a versatile tool for understanding a multigene family of UGTs in Crocus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号