首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
A modified synthetic acetone operon was constructed. It consists of two genes from Clostridium acetobutylicum (thlA coding for thiolase and adc coding for acetoacetate decarboxylase) and one from Bacillus subtilis or Haemophilus influenzae (teIIsrf or ybgC, respectively, for thioesterase). Expression of this operon in Escherichia coli resulted in the production of acetone starting from the common metabolite acetyl-CoA via acetoacetyl-CoA and acetoacetate. The thioesterases do not need a CoA acceptor for acetoacetyl-CoA hydrolysis. Thus, in contrast to the classic acetone pathway of Clostridium acetobutylicum and related microorganisms which employ a CoA transferase, the new pathway is acetate independent. The genetic background of the host strains was crucial. Only E. coli strains HB101 and WL3 were able to produce acetone via the modified plasmid based pathway, up to 64 mM and 42 mM in 5-ml cultures, respectively. Using glucose fed-batch cultures the concentration could be increased up to 122 mM acetone with HB101 carrying the recombinant plasmid pUC19ayt (thioesterase from H. influenzae). The formation of acetone led to a decreased acetate production by E. coli.  相似文献   

2.
T. Hanai  S. Atsumi    J. C. Liao 《Applied microbiology》2007,73(24):7814-7818
A synthetic pathway was engineered in Escherichia coli to produce isopropanol by expressing various combinations of genes from Clostridium acetobutylicum ATCC 824, E. coli K-12 MG1655, Clostridium beijerinckii NRRL B593, and Thermoanaerobacter brockii HTD4. The strain with the combination of C. acetobutylicum thl (acetyl-coenzyme A [CoA] acetyltransferase), E. coli atoAD (acetoacetyl-CoA transferase), C. acetobutylicum adc (acetoacetate decarboxylase), and C. beijerinckii adh (secondary alcohol dehydrogenase) achieved the highest titer. This strain produced 81.6 mM isopropanol in shake flasks with a yield of 43.5% (mol/mol) in the production phase. To our knowledge, this work is the first to produce isopropanol in E. coli, and the titer exceeded that from the native producers.  相似文献   

3.
Mutants of Clostridium acetobutylicum ATCC 824 exhibiting resistance to 2-bromobutyrate or rifampin were isolated after nitrosoguanidine treatment. Mutants were screened for solvent production by using an automated alcohol test system. Isolates were analyzed for levels of butanol, ethanol, acetone, butyrate, acetate, and acetoin in stationary-phase batch cultures. The specific activities of NADH- and NADPH-dependent butanol dehydrogenase and butyraldehyde dehydrogenase as well as those of acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase (butyrate-acetoacetate coenzyme A-transferase [EC 2.8.3.9]) (CoA-transferase), butyrate kinase, and phosphotransbutyrylase were measured at the onset of stationary phase. Rifampin-resistant strain D10 and 2-bromobutyrate mutant R were found to be deficient in only CoA-transferase, while several other mutants exhibited reduced butyraldehyde dehydrogenase and butanol dehydrogenase activities as well. The colony morphology of 2-bromobutyrate mutant R was similar to that of the parent on RCM medium; however, it had about 1/10 the level of CoA-transferase and increased levels of butanol dehydrogenase and butyraldehyde dehydrogenase. A nonsporulating, spontaneously derived degenerated strain exhibited reduced levels of butyraldehyde dehydrogenase, butanol, dehydrogenase, and CoA-transferase compared with those of the original strain. When C. acetobutylicum ATCC 824 was grown on medium containing low levels of 2-bromobutyrate, an altered colony morphology was observed. Not all strains resistant to 2-bromobutyrate (12 mM) were non-solvent-producing strains.  相似文献   

4.
The production of the chemical solvents acetone and butanol by the bacterium Clostridium acetobutylicum was one of the first large-scale industrial processes to be developed, and in the first part of the last century ranked second in importance only to ethanol production. After a steep decline in its industrial use, there has been a recent resurgence of interest in the acetone–butanol–ethanol (ABE) fermentation process, with a particular emphasis on butanol production. In order to generate strains suitable for efficient use on an industrial scale, metabolic engineering is required to alter the AB ratio in favour of butanol, and eradicate the production of unwanted products of fermentation. Using ClosTron technology, a large-scale targeted mutagenesis in C. acetobutylicum ATCC 824 was carried out, generating a set of 10 mutants, defective in alcohol/aldehyde dehydrogenases 1 and 2 (adhE1, adhE2), butanol dehydrogenases A and B (bdhA, bdhB), phosphotransbutyrylase (ptb), acetate kinase (ack), acetoacetate decarboxylase (adc), CoA transferase (ctfA/ctfB), and a previously uncharacterised putative alcohol dehydrogenase (CAP0059). However, inactivation of the main hydrogenase (hydA) and thiolase (thl) could not be achieved. Constructing such a series of mutants is paramount for the acquisition of information on the mechanism of solvent production in this organism, and the subsequent development of industrial solvent producing strains. Unexpectedly, bdhA and bdhB mutants did not affect solvent production, whereas inactivation of the previously uncharacterised gene CAP0059 resulted in increased acetone, butanol, and ethanol formation. Other mutants showed predicted phenotypes, including a lack of acetone formation (adc, ctfA, and ctfB mutants), an inability to take up acids (ctfA and ctfB mutants), and a much reduced acetate formation (ack mutant). The adhE1 mutant in particular produced very little solvents, demonstrating that this gene was indeed the main contributor to ethanol and butanol formation under the standard batch culture conditions employed in this study. All phenotypic changes observed could be reversed by genetic complementation, with exception of those seen for the ptb mutant. This mutant produced around 100 mM ethanol, no acetone and very little (7 mM) butanol. The genome of the ptb mutant was therefore re-sequenced, together with its parent strain (ATCC 824 wild type), and shown to possess a frameshift mutation in the thl gene, which perfectly explained the observed phenotype. This finding reinforces the need for mutant complementation and Southern Blot analysis (to confirm single ClosTron insertions), which should be obligatory in all further ClosTron applications.  相似文献   

5.
The formation of acetone and n-butanol by Clostridium acetobutylicum NCIB 8052 (ATCC 824) was monitored in batch culture at 35°C in a glucose (2% [wt/vol]) minimal medium maintained throughout at either pH 5.0 or 7.0. At pH 5, good solvent production was obtained in the unsupplemented medium, although addition of acetate plus butyrate (10 mM each) caused solvent production to be initiated at a lower biomass concentration. At pH 7, although a purely acidogenic fermentation was maintained in the unsupplemented medium, low concentrations of acetone and n-butanol were produced when the glucose content of the medium was increased (to 4% [wt/vol]). Substantial solvent concentrations were, however, obtained at pH 7 in the 2% glucose medium supplemented with high concentrations of acetate plus butyrate (100 mM each, supplied as their potassium salts). Thus, C. acetobutylicum NCIB 8052, like C. beijerinckii VPI 13436, is able to produce solvents at neutral pH, although good yields are obtained only when adequately high concentrations of acetate and butyrate are supplied. Supplementation of the glucose minimal medium with propionate (20 mM) at pH 5 led to the production of some n-propanol as well as acetone and n-butanol; the final culture medium was virtually acid free. At pH 7, supplementation with propionate (150 mM) again led to the formation of n-propanol but also provoked production of some acetone and n-butanol, although in considerably smaller amounts than were obtained when the same basal medium had been fortified with acetate and butyrate at pH 7.  相似文献   

6.
Production of acetone, butanol, ethanol, acetic acid, and butyric acid by three strains of anaerobic bacteria, which we identified as Clostridium acetobutylicum, was studied. The yield of acetone and alcohols in 6% wheat flour medium amounted to 12.7–15 g/l with butanol constituting 51.0–55.6%. Activities of these strains towards xylan, β-glucan, carboxymethylcellulose, and crystalline and amorphous celluloses were studied. C. acetobutylicum 6, C. acetobutylicum 7, and C. acetobutylicum VKPM B-4786 produced larger amounts of acetone and alcohols and displayed higher cellulase and hemicellulase activities than the type strain C. acetobutylicum ATCC 824 in lab-scale butch cultures. It was demonstrated that starch in the medium could be partially substituted with plant biomass.  相似文献   

7.
To improve butanol selectivity, Clostridium acetobutylicum M5(pIMP1E1AB) was constructed by adhE1-ctfAB complementation of C. acetobutylicum M5, a derivative strain of C. acetobutylicum ATCC 824, which does not produce solvents due to the lack of megaplasmid pSOL1. The gene products of adhE1-ctfAB catalyze the formation of acetoacetate and ethanol/butanol with acid re-assimilation in solventogenesis. Effects of the adhE1-ctfAB complementation of M5 were studied by batch fermentations under various pH and glucose concentrations, and by flux balance analysis using a genome-scale metabolic model for this organism. The metabolically engineered M5(pIMP1E1AB) strain was able to produce 154 mM butanol with 9.9 mM acetone at pH 5.5, resulting in a butanol selectivity (a molar ratio of butanol to total solvents) of 0.84, which is much higher than that (0.57 at pH 5.0 or 0.61 at pH 5.5) of the wild-type strain ATCC 824. Unlike for C. acetobutylicum ATCC 824, a higher level of acetate accumulation was observed during fermentation of the M5 strain complemented with adhE1 and/or ctfAB. A plausible reason for this phenomenon is that the cellular metabolism was shifted towards acetate production to compensate reduced ATP production during the largely growth-associated butanol formation by the M5(pIMP1E1AB) strain.  相似文献   

8.
A genetically engineered strain of Escherichia coli JM109 harboring the isopropanol-producing pathway consisting of five genes encoding four enzymes, thiolase, coenzyme A (CoA) transferase, acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824, and primary–secondary alcohol dehydrogenase from C. beijerinckii NRRL B593, produced up to 227 mM of isopropanol from glucose under aerobic fed-batch culture conditions. Acetate production by the engineered strain was approximately one sixth that produced by a control E. coli strain bearing an expression vector without the clostridial genes. These results demonstrate a functional isopropanol-producing pathway in E. coli and consequently carbon flux from acetyl-CoA directed to isopropanol instead of acetate. This is the first report on isopropanol production by genetically engineered microorganism under aerobic culture conditions.  相似文献   

9.
Clostridium acetobutylicum ATCC 824 was metabolically engineered for improved xylose utilization. The gene talA, which encodes transaldolase from Escherichia coli K-12, was cloned and overexpressed in C. acetobutylicum ATCC 824. Compared with C. acetobutylicum ATCC 824 (824-WT), the transformant bearing the E. coli talA gene (824-TAL) showed improved ability on xylose utilization and solvents production using xylose as the sole carbon source. During the fermentation of xylose and glucose mixtures with three xylose/glucose ratios (approximately 1:2, 1:1 and 2:1), the rate of xylose consumption and final solvents titers of 824-TAL were all higher than those of 824-WT, despite glucose repression on xylose uptake still existing. These results suggest that the insufficiency of transaldolase in the pentose phosphate pathway (PPP) of C. acetobutylicum is one of the bottlenecks for xylose metabolism and therefore, overexpressing the gene encoding transaldolase is able to improve xylose utilization and solvent production.  相似文献   

10.
Using Escherichia coli for installing and maintaining anaerobiosis for hydrogen production by Clostridium acetobutylicum ATCC 824 is a cost-effective approach for industrial hydrogen production, as it does not require reducing agents or sparging with inert gases. This study was devoted for investigating the feasibility for installing and maintaining anaerobiosis of hydrogen production by C. acetobutylicum ATCC 824 when using E. coli HD701 utilizable versus non utilizable sugars as a-carbon source. Using E. coli HD701 for installing anaerobiosis showed a comparable hydrogen production yield and efficiency to the use of reducing agents and nitrogen sparging in case of hydrogen production from the E. coli HD701 non utilizable sugars. In contrast, using E. coli HD701 for installing anaerobiosis showed a lower hydrogen production yield and efficiency than the use of reducing agents and nitrogen sparging in case of using glucose as a substrate. This is possibly because E. coli HD701 when using glucose compensate for the substrate, and produce hydrogen with lower efficiency than C. acetobutylicum ATCC 824. These results indicated that the use of E. coli HD701 for installing anaerobiosis would not be economically feasible when using E. coli HD701 utilizable sugars as a carbon source. In contrast, the use of this approach for installing anaerobiosis for hydrogen production from sucrose and starch would have a high potency for industrial applications.  相似文献   

11.
12.
A gene expression reporter system (pHT3) for Clostridium acetobutylicum ATCC 824 was developed by using the lacZ gene from Thermoanaerobacterium thermosulfurogenes EM1 as the reporter gene. In order to test the reporter system, promoters of three key metabolic pathway genes, ptb (coding for phosphotransbutyrylase), thl (coding for thiolase), and adc (coding for acetoacetate decarboxylase), were cloned upstream of the reporter gene in pHT3 in order to construct vectors pHT4, pHT5, and pHTA, respectively. Detection of β-galactosidase activity in time course studies performed with strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA) demonstrated that the reporter gene produced a functional β-galactosidase in C. acetobutylicum. In addition, time course studies revealed differences in the β-galactosidase specific activity profiles of strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA), suggesting that the reporter system developed in this study is able to effectively distinguish between different promoters. The stability of the β-galactosidase produced by the reporter gene was also examined with strains ATCC 824(pHT4) and ATCC 824(pHT5) by using chloramphenicol treatment to inhibit protein synthesis. The data indicated that the β-galactosidase produced by the lacZ gene from T. thermosulfurogenes EM1 was stable in the exponential phase of growth. In pH-controlled fermentations of ATCC 824(pHT4), the kinetics of β-galactosidase formation from the ptb promoter and phosphotransbutyrylase formation from its own autologous promoter were found to be similar.  相似文献   

13.
A gene encoding a putative 150-amino-acid methylglyoxal synthase was identified in Clostridium acetobutylicum ATCC 824. The enzyme was overexpressed in Escherichia coli and purified. Methylglyoxal synthase has a native molecular mass of 60 kDa and an optimum pH of 7.5. The Km and Vmax values for the substrate dihydroxyacetone phosphate were 0.53 mM and 1.56 mmol min−1 μg−1, respectively. When E. coli glycerol dehydrogenase was coexpressed with methylglyoxal synthase in E. coli BL21(DE3), 3.9 mM 1,2-propanediol was produced.  相似文献   

14.
Clostridium acetobutylicum was metabolically engineered to produce a biofuel consisting of an isopropanol/butanol/ethanol mixture. For this purpose, different synthetic isopropanol operons were constructed and introduced on plasmids in a butyrate minus mutant strain (C. acetobutylicum ATCC 824 Δcac15ΔuppΔbuk). The best strain expressing the isopropanol operon from the thl promoter was selected from batch experiments at pH 5. By further optimizing the pH of the culture, a biofuel mixture with almost no by-products was produced at a titer, a yield and productivity never reached before, opening the opportunities to develop an industrial process for alternative biofuels with Clostridial species. Furthermore, by performing in vivo and in vitro flux analysis of the synthetic isopropanol pathway, this flux was identified to be limited by the [acetate]int and the high Km of CoA-transferase for acetate. Decreasing the Km of this enzyme using a protein engineering approach would be a good target for improving isopropanol production and avoiding acetate accumulation in the culture medium.  相似文献   

15.
Solvent-producing clostridia are well known for their capacity to use a wide variety of renewable biomass and agricultural waste materials for biobutanol production. To investigate the possibility of co-production of a high value chemical during biobutanol production, the Clostridium acetobutylicum riboflavin operon ribGBAH was over-expressed in C. acetobutylicum on Escherichia coliClostridium shuttle vector pJIR750. Constructs that either maintained the original C. acetobutylicum translational start codon or modified the start codons of ribG and ribB from TTG to ATG were designed. Riboflavin was successfully produced in both E. coli and C. acetobutylicum using these plasmids, and riboflavin could accumulate up to 27 mg/l in Clostridium culture. Furthermore, the C. acetobutylicum purine pathway was modified by over-expression of the Clostridium purF gene, which encodes the enzyme PRPP amidotransferase. The function of the plasmid pJaF bearing C. acetobutylicum purF was verified by its ability to complement an E. coli purF mutation. However, co-production of riboflavin with biobutanol by use of the purF over-expression plasmid was not improved under the experimental conditions examined. Further rational mutation of the purF gene was conducted by replacement of amino acid codons D302 V and K325Q to make it similar to the feedback-resistant enzymes of other species. However, the co-expression of ribGBAH and purFC in C. acetobutylicum also did not improve riboflavin production. By buffering the culture pH, C. acetobutylicum ATCC 824(pJpGN) could accumulate more than 70 mg/l riboflavin while producing 190 mM butanol in static cultures. Riboflavin production was shown to exert no effect on solvent production at these levels.  相似文献   

16.
Esters are formed by the condensation of acids with alcohols. The esters isoamyl acetate and butyl butyrate are used for food and beverage flavorings. Alcohol acetyltransferase is one enzyme responsible for the production of esters from acetyl-CoA and different alcohol substrates. The genes ATF1 and ATF2, encoding alcohol acetyltransferases from the yeast Saccharomyces cerevisiae have been sequenced and characterized. The production of acids and alcohols in mass quantities by the industrially important Clostridium acetobutylicum makes it a potential organism for exploitation of alcohol acetyltransferase activity. This report focuses on the heterologous expression of the alcohol acetyltransferases in Escherichia coli and C. acetobutylicum. ATF1 and ATF2 were cloned and expressed in E. coli and ATF2 was expressed in C. acetobutylicum. Isoamyl acetate production from the substrate isoamyl alcohol in E. coli and C. acetobutylicum cultures was determined by head-space gas analysis. Alcohol acetyltransferase I produced more than twice as much isoamyl acetate as alcohol acetyltransferase II when expressed from a high-copy expression vector. The effect of substrate levels on ester production was explored in the two bacterial hosts to demonstrate the efficacy of utilizing ATF1and ATF2 in bacteria for ester production.  相似文献   

17.
The genome sequence of Clostridium acetobutylicum ATCC 824, a noncellulolytic solvent-producing strain, predicts the production of various proteins with domains typical for cellulosomal subunits. Most of the genes coding for these proteins are grouped in a cluster similar to that found in cellulolytic clostridial species, such as Clostridium cellulovorans. CAC0916, one of the open reading frames present in the putative cellulosome gene cluster, codes for CelG, a putative endoglucanase belonging to family 9, and it was cloned and overexpressed in Escherichia coli. The overproduced CelG protein was purified by making use of its high affinity for cellulose and was characterized. The biochemical properties of the purified CelG were comparable to those of other known enzymes belonging to the same family. Expression of CelG by C. acetobutylicum grown on different substrates was studied by Western blotting by using antibodies raised against the purified E. coli-produced protein. Whereas the antibodies cross-reacted with CelG-like proteins secreted by cellobiose- or cellulose-grown C. cellulovorans cultures, CelG was not detectable in extracellular medium from C. acetobutylicum grown on cellobiose or glucose. However, notably, when lichenan-grown cultures were used, several bands corresponding to CelG or CelG-like proteins were present, and there was significantly increased extracellular endoglucanase activity.  相似文献   

18.
In the current investigation, the biological activities of essential oils obtained from organs of Ruta chalepensis plants grown under salt stress (0, 50 and 100 mM NaCl) were analyzed. Their chemical composition was often investigated by GC/FID and GC–MS and the antimicrobial activities towards eight bacteria (Salmonella All, Salmonella K, Escherichia coli 45AG, Escherichia coli 45AI, Staphylococcus aureus 9402, Staphylococcus aureus 02B145, Listeria 477 and Pseudomonas aeruginosa ATCC 10145) and five fungi strains (Aspergillus, Saccharomycee crvisiale, Streptomyces griseus, Fusarium solani and Penicillium thomii) were studied. Results revealed that salt increased essential oil production in leaves at 50 and 100 mM NaCl. A total of 20 compounds were identified in leaves, undecan-2-one, nonan-2-one and geijerene being the dominant ones. In stems, 21 compounds were found; they were dominated by decan-2-one, geijerene, nonan-2-one and undecan-2-one. In contrast, roots exhibited a large variation with 25 volatile compounds and octyl acetate, methyl decanoate, phytyl acetate were the major ones. Salt stress induced significant antibacterial activity changes, mainly in leaves and stems. In leaves, the minimum inhibitory and bactericidal concentration decreased at 100 mM NaCl against Listeria 477, the two strains of E. coli (45AG and 45AI) and P. aeruginosa but it increased versus other bacteria. In stems, salt increased oil antibacterial activity against all strains except P. aeruginosa ATCC 10145. Root oil showed the least antibacterial activity under saline conditions versus Listeria 477 and P. aeruginosa ATCC 10145. As regards antifungal activity, NaCl reduced the antifungal activity of essential oils against the majority of fungi strains.  相似文献   

19.
Synthetic metabolic pathways have been constructed for the production of enantiopure (R)- and (S)-3-hydroxybutyrate (3HB) from glucose in recombinant Escherichia coli strains. To promote maximal activity, we profiled three thiolase homologs (BktB, Thl, and PhaA) and two coenzyme A (CoA) removal mechanisms (Ptb-Buk and TesB). Two enantioselective 3HB-CoA dehydrogenases, PhaB, producing the (R)-enantiomer, and Hbd, producing the (S)-enantiomer, were utilized to control the 3HB chirality across two E. coli backgrounds, BL21Star(DE3) and MG1655(DE3), representing E. coli B- and K-12-derived strains, respectively. MG1655(DE3) was found to be superior for the production of each 3HB stereoisomer, although the recombinant enzymes exhibited lower in vitro specific activities than BL21Star(DE3). Hbd in vitro activity was significantly higher than PhaB activity in both strains. The engineered strains achieved titers of enantiopure (R)-3HB and (S)-3HB as high as 2.92 g liter−1 and 2.08 g liter−1, respectively, in shake flask cultures within 2 days. The NADPH/NADP+ ratio was found to be two- to three-fold higher than the NADH/NAD+ ratio under the culture conditions examined, presumably affecting in vivo activities of PhaB and Hbd and resulting in greater production of (R)-3HB than (S)-3HB. To the best of our knowledge, this study reports the highest (S)-3HB titer achieved in shake flask E. coli cultures to date.The synthesis of chiral molecules is of significant interest in the pharmaceutical industry because frequently one stereoisomer of a drug has efficacy while the other has either substantially reduced or no activity or may even have adverse effects (20, 23). Additionally, chiral molecules serve as building blocks for many pharmaceuticals and high-value compounds. Thus, the ability to prepare chiral molecules with high optical purity is important. Stereoselective chemical processes generally employ expensive chiral catalysts, require harsh physical conditions and solvents, and suffer from extensive by-product formation. In contrast, enzyme-catalyzed reactions are highly stereoselective and can be performed in aqueous solutions under mild conditions (21). As a result, the use of biological processes for chiral molecule production has been extensively investigated (4, 28, 32, 36). One example of such a process is the biosynthesis of 3-hydroxybutyric acid (3HB), a versatile chiral molecule containing one hydroxyl group and one carboxyl group, used as a building block for the synthesis of optically active fine chemicals, such as vitamins, antibiotics, pheromones, and flavor compounds (5, 6, 18, 27).The biosynthesis of 3HB has typically been achieved by two different mechanisms: depolymerization (in vitro or in vivo) of microbially synthesized poly-(R)-3-hydroxybutyric acid (PHB) (8, 13) or direct synthesis of 3HB without a PHB intermediate (9, 12, 15). However, due to the stereospecific constraints of PHB synthesis, in which polymers are composed exclusively of (R)-3HB monomer units, the synthesis of (S)-3HB from PHB is effectively impossible. In contrast, direct synthesis of both enantiopure (R)-3HB and (S)-3HB is possible. Pathways facilitating (R)-3HB synthesis have been constructed in Escherichia coli by simultaneous expression of phaA (encoding acetoacetyl coenzyme A [CoA] thiolase) and phaB [encoding (R)-3HB-CoA dehydrogenase] from Ralstonia eutropha H16, and ptb (encoding phosphotransbutyrylase) and buk (encoding butyrate kinase) from Clostridium acetobutylicum ATCC 824 (9). In addition to the use of ptb and buk to catalyze the conversion of (R)-3HB-CoA to (R)-3HB, tesB (encoding thioesterase II from E. coli) has also been used for the direct hydrolysis of (R)-3HB-CoA to yield (R)-3HB (15). The production of (S)-3HB in E. coli has recently been reported using a biosynthetic pathway consisting of phaA from R. eutropha H16, hbd [encoding (S)-3HB-CoA dehydrogenase] from C. acetobutylicum ATCC 824, and bch (encoding 3-hydroxyisobutyryl-CoA hydrolase) from Bacillus cereus ATCC 14579 (12).In E. coli, the synthesis of both enantiomers of 3HB begins with the condensation of two molecules of acetyl-CoA, catalyzed by a thiolase, to give acetoacetyl-CoA (Fig. (Fig.1).1). The acetoacetyl-CoA is then reduced either to (R)-3HB-CoA via ketone reduction mediated by an NADPH-dependent (R)-3HB-CoA dehydrogenase (PhaB) or to (S)-3HB-CoA via an NADH-dependent (S)-3-HB-CoA dehydrogenase (Hbd). (R)-3HB-CoA and (S)-3HB-CoA can each be further modified via a suitable CoA removal reaction to form (R)-3HB and (S)-3HB, respectively. In an effort to increase chiral 3HB production, it is essential to identify a thiolase capable of efficiently catalyzing the first reaction in the 3HB biosynthetic pathways, to draw acetyl-CoA from competing endogenous pathways. Thus, we examined three different thiolases (BktB and PhaA from R. eutropha H16 and Thl from C. acetobutylicum ATCC 824) to determine which is most proficient for 3HB synthesis. (R)-3HB-CoA and (S)-3HB-CoA synthesized via the reduction reaction catalyzed by PhaB and Hbd, respectively, must be converted to their respective free acid forms before transport or diffusion out of the cell. We have compared two sets of CoA-removing enzyme mechanisms, including the phosphotransbutyrylase (Ptb) and butyrate kinase (Buk) system encoded by the ptb-buk operon from C. acetobutylicum ATCC 824 and acyl-CoA thioesterase II (TesB) from E. coli MG1655. Moreover, it has long been argued whether B strains or K-12 strains of E. coli would serve as better hosts for the biosynthesis of small molecules. Microarrays and Northern blot analyses have suggested that several metabolic pathways, including the tricarboxylic acid (TCA) cycle, glyoxylate shunt, glycolysis, and fatty acid degradation are different between these two strains (22, 25, 34, 35), implying that they may differ significantly in their abilities to supply significant levels of acetyl-CoA as the precursor for 3HB synthesis. Thus, we have also compared 3HB synthesis across two representative E. coli strains: BL21Star(DE3) (B strain) and MG1655(DE3) (K-12 strain). 3HB chirality was examined and verified by high-performance liquid chromatography (HPLC) analysis using a chiral stationary phase to provide separation.Open in a separate windowFIG. 1.Schematic representation of (S)-3HB or (R)-3HB synthesis from glucose in engineered E. coli. BktB, acetoacetyl-CoA thiolase from R. eutropha H16; Thl, acetoacetyl-CoA thiolase from C. acetobutylicum ATCC 824; PhaA, acetoacetyl-CoA thiolase from R. eutropha H16; Hbd, (S)-3HB-CoA dehydrogenase from C. acetobutylicum ATCC 824; PhaB, (R)-3HB-CoA dehydrogenase from R. eutropha H16; Ptb, phosphotransbutyrylase from C. acetobutylicum ATCC 824; Buk, butyrate kinase from C. acetobutylicum ATCC 824; TesB, acyl-CoA thioesterase II from E. coli MG1655.Altogether, we have explored the production of each stereoisomer of 3HB across different strains of E. coli, different thiolases, and different CoA removal systems to engineer E. coli strains for enhanced chiral 3HB production.  相似文献   

20.
Acetoin reductase catalyzes the production of 2,3-butanediol from acetoin. The gene encoding the acetoin reductase of Klebsiella pneumoniae CG21 was cloned and expressed in Escherichia coli and Clostridium acetobutylicum ATCC 824. The nucleotide sequence of the gene encoding the enzyme was determined to be 768 bp long. Expression of the K. pneumoniae acetoin reductase gene in E. coli revealed that the enzyme has a molecular mass of about 31,000 Da based on sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The K. pneumoniae acetoin reductase gene was cloned into a clostridial/E. coli shuttle vector, and expression of the gene resulted in detectable levels of acetoin reductase activity in both E. coli and C. acetobutylicum. While acetoin, the natural substrate of acetoin reductase, is a typical product of fermentation by C. acetobutylicum, 2,3-butanediol is not. Analysis of culture supernatants by gas chromatography revealed that introduction of the K. pneumoniae acetoin reductase gene into C. acetobutylicum was not sufficient for 2,3-butanediol production even though the cultures were producing acetoin. 2,3-Butanediol was produced by cultures of C. acetobutylicum containing the gene only when commercial acetoin was added. Journal of Industrial Microbiology & Biotechnology (2001) 27, 220–227. Received 12 September 2000/ Accepted in revised form 26 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号