首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic translation initiation factor 5A (eIF5A) is a protein that is highly conserved and essential for cell viability. This factor is the only protein known to contain the unique and essential amino acid residue hypusine. This work focused on the structural and functional characterization of Saccharomyces cerevisiae eIF5A. The tertiary structure of yeast eIF5A was modeled based on the structure of its Leishmania mexicana homologue and this model was used to predict the structural localization of new site-directed and randomly generated mutations. Most of the 40 new mutants exhibited phenotypes that resulted from eIF-5A protein-folding defects. Our data provided evidence that the C-terminal alpha-helix present in yeast eIF5A is an essential structural element, whereas the eIF5A N-terminal 10 amino acid extension not present in archaeal eIF5A homologs, is not. Moreover, the mutants containing substitutions at or in the vicinity of the hypusine modification site displayed nonviable or temperature-sensitive phenotypes and were defective in hypusine modification. Interestingly, two of the temperature-sensitive strains produced stable mutant eIF5A proteins--eIF5A(K56A) and eIF5A(Q22H,L93F)--and showed defects in protein synthesis at the restrictive temperature. Our data revealed important structural features of eIF5A that are required for its vital role in cell viability and underscored an essential function of eIF5A in the translation step of gene expression.  相似文献   

2.
Cuesta R  Xi Q  Schneider RJ 《The EMBO journal》2000,19(13):3465-3474
Translation of cellular mRNAs involves formation of a cap-binding translation initiation complex known as eIF4F, containing phosphorylated cap-binding protein eIF4E, eIF4E kinase Mnk1, eIF4A, poly(A)-binding protein and eIF4G. Adenovirus is shown to prevent cellular translation by displacing Mnk1 from eIF4F, thereby blocking phosphorylation of eIF4E. Over expression of an eIF4E mutant that cannot be phosphorylated by Mnk1 impairs translation of cellular but not viral late mRNAs. Adenovirus 100k protein is shown to bind the C-terminus of eIF4G in vivo and in vitro, the same region bound by Mnk1. In vivo, 100k protein displaces Mnk1 from eIF4G during adenovirus infection, or in transfected cells. Purified 100k protein also evicts Mnk1 from isolated eIF4F complexes in vitro. A mutant adenovirus with a temperature-sensitive 100k protein that cannot inhibit cellular protein synthesis at restrictive temperature no longer blocks Mnk1 binding to eIF4G, or phosphorylation of eIF4E. We describe a mechanism whereby adenovirus selectively inhibits the translation of cellular but not viral mRNAs by displacement of Mnk1 from eIF4G and inhibition of eIF4E phosphorylation.  相似文献   

3.
Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid derived from the modification of lysine by spermidine. Two genes, TIF51A and TIF51B, encode eIF5A in the yeast Saccharomyces cerevisiae. In an effort to understand the structure–function relationship of eIF5A, we have generated yeast mutants by introducing plasmid-borne tif51A into a double null strain where both TIF51A and TIF51B have been disrupted. One of the mutants, tsL102A strain (tif51A L102A tif51aΔ tif51bΔ) exhibits a strong temperature-sensitive growth phenotype. At the restrictive temperature, tsL102A strain also exhibits a cell shape change, a lack of volume change in response to temperature increase and becomes more sensitive to ethanol, a hallmark of defects in the PKC/WSC cell wall integrity pathway. In addition, a striking change in actin dynamics and a complete cell cycle arrest at G1 phase occur in tsL102A cells at restrictive temperature. The temperature-sensitivity of tsL102A strain is due to a rapid loss of mutant eIF5A with the half-life reduced from 6 h at permissive temperature to 20 min at restrictive temperature. Phenylmethyl sulfonylfluoride (PMSF), an irreversible inhibitor of serine protease, inhibited the degradation of mutant eIF5A and suppressed the temperature-sensitive growth arrest. Sorbitol, an osmotic stabilizer that complement defects in PKC/WSC pathways, stabilizes the mutant eIF5A and suppresses all the observed temperature-sensitive phenotypes.  相似文献   

4.
Maiti T  Das S  Maitra U 《Gene》2000,244(1-2):109-118
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S ribosomal initiation complex (40S.eIF3.AUG.Met-tRNA(f).eIF2.GTP) to promote the hydrolysis of bound GTP. In Saccharomyces cerevisiae, eIF5, a protein of 45346Da, is encoded by a single-copy essential gene, TIF5. In this paper, we have isolated a temperature-sensitive S. cerevisiae strain, TMY5-1, by replacing the wild-type chromosomal copy of TIF5 with one mutagenized in vitro. The mutant yeast cells rapidly cease protein synthesis when grown under non-permissive conditions, lose polyribosomes and accumulate free 80S ribosomes. Further characterization of mutant eIF5 showed that the mutant protein, expressed in Escherichia coli, is defective both in its interaction with eIF2 as well as in mediating the hydrolysis of GTP bound to the 40S initiation complex and consequently in the formation of the 80S initiation complex. Additionally, the availability of a yeast strain containing temperature-sensitive mutation in the eIF5 gene allowed us to construct a cell-free translation system that was dependent on exogenously added eIF5 for translation of mRNAs in vitro.  相似文献   

5.
D Zuk  A Jacobson 《The EMBO journal》1998,17(10):2914-2925
Most factors known to function in mRNA turnover are not essential for cell viability. To identify essential factors, approximately 4000 temperature-sensitive yeast strains were screened for an increase in the level of the unstable CYH2 pre-mRNA. At the non-permissive temperature, five mutants exhibited decreased decay rates of the CYH2 pre-mRNA and mRNA, and the STE2, URA5 and PAB1 mRNAs. Of these, the mutant ts1159 had the most extensive phenotype. Expression of the TIF51A gene (encoding eIF-5A) complemented the temperature-sensitive growth and mRNA decay phenotypes of ts1159. The tif51A allele was rescued from these cells and shown to encode a serine to proline change within a predicted alpha-helical segment of the protein. ts1159 also exhibited an approximately 30% decrease in protein synthesis at the restrictive temperature. Measurement of amino acid incorporation in wild-type cells incubated with increasing amounts of cycloheximide demonstrated that a decrease in protein synthesis of this magnitude could not account for the full extent of the mRNA decay defects observed in ts1159. Interestingly, the ts1159 cells accumulated uncapped mRNAs at the non-permissive temperature. These results suggest that eIF-5A plays a role in mRNA turnover, perhaps acting downstream of decapping.  相似文献   

6.
The initiation of translation in eukaryotes requires several multisubunit complexes, including eukaryotic translation initiation factor 4F (eIF4F). In higher eukaryotes eIF4F is composed of the cap binding protein eIF4E, the adapter protein eIF4G, and the RNA-stimulated ATPase eIF4A. The association of eIF4A with Saccharomyces cerevisiae eIF4F has not yet been demonstrated, and therefore the degree to which eIF4A's conserved function relies upon this association has remained unclear. Here we report an interaction between yeast eIF4G and eIF4A. Specifically, we found that the growth arrest phenotype associated with three temperature-sensitive alleles of yeast eIF4G2 was suppressed by excess eIF4A and that this suppression was allele specific. In addition, in vitro translation extracts derived from an eIF4G2 mutant strain could be heat inactivated, and this inactivation could be reversed upon the addition of recombinant eIF4A. Finally, in vitro binding between yeast eIF4G and eIF4A was demonstrated, as was diminished binding between mutant eIF4G2 proteins and eIF4A. In total, these data indicate that yeast eIF4G and eIF4A physically associate and that this association performs an essential function.  相似文献   

7.
The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIF5A domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIF5A may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.  相似文献   

8.
Initiation factor eIF4G is a key regulator of eukaryotic protein synthesis, recognizing proteins bound at both ends of an mRNA to help recruit messages to the small (40S) ribosomal subunit. Notably, the genomes of a wide variety of eukaryotes encode multiple distinct variants of eIF4G. We found that deletion of eIF4G1, but not eIF4G2, impairs growth and global translation initiation rates in budding yeast under standard laboratory conditions. Not all mRNAs are equally sensitive to loss of eIF4G1; genes that encode messages with longer poly(A) tails are preferentially affected. However, eIF4G1-deletion strains contain significantly lower levels of total eIF4G, relative to eIF4G2-delete or wild type strains. Homogenic strains, which encode two copies of either eIF4G1 or eIF4G2 under native promoter control, express a single isoform at levels similar to the total amount of eIF4G in a wild type cell and have a similar capacity to support normal translation initiation rates. Polysome microarray analysis of these strains and the wild type parent showed that translationally active mRNAs are similar. These results suggest that total eIF4G levels, but not isoform-specific functions, determine mRNA-specific translational efficiency.  相似文献   

9.
mRNA translation in crude extracts from the yeast Saccharomyces cerevisiae is stimulated by the cap structure and the poly(A) tail through the binding of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) and the poly(A) tail-binding protein Pab1p. These proteins also bind to the translation initiation factor eIF4G and thereby link the mRNA to the general translational apparatus. In contrast, uncapped, poly(A)-deficient mRNA is translated poorly in yeast extracts, in part because of the absence of eIF4E and Pab1p binding sites on the mRNA. Here, we report that uncapped-mRNA translation is also repressed in yeast extracts due to the binding of eIF4E to eIF4G. Specifically, we find that mutations which weaken the eIF4E binding site on the yeast eIF4G proteins Tif4631p and Tif4632p lead to temperature-sensitive growth in vivo and the stimulation of uncapped-mRNA translation in vitro. A mutation in eIF4E which disturbs its ability to interact with eIF4G also leads to a stimulation of uncapped-mRNA translation in vitro. Finally, overexpression of eIF4E in vivo or the addition of excess eIF4E in vitro reverses these effects of the mutations. These data support the hypothesis that the eIF4G protein can efficiently stimulate translation of exogenous uncapped mRNA in extracts but is prevented from doing so as a result of its association with eIF4E. They also suggest that some mRNAs may be translationally regulated in vivo in response to the amount of free eIF4G in the cell.  相似文献   

10.
The complex eukaryotic initiation factor 3 (eIF3) was shown to promote the formation of the 43 S preinitiation complex by dissociating 40 S and 60 S ribosomal subunits, stabilizing the ternary complex, and aiding mRNA binding to 40 S ribosomal subunits. Recently, we described the identification of RPG1 (TIF32), the p110 subunit of the eIF3 core complex in yeast. In a screen for Saccharomyces cerevisiae multicopy suppressors of the rpg1-1 temperature-sensitive mutant, an unknown gene corresponding to the open reading frame YLR192C was identified. When overexpressed, the 30-kDa gene product, named Hcr1p, was able to support, under restrictive conditions, growth of the rpg1-1 temperature-sensitive mutant, but not of a Rpg1p-depleted mutant. An hcr1 null mutant was viable, but showed slight reduction of growth when compared with the wild-type strain. Physical interaction between the Hcr1 and Rpg1 proteins was shown by co-immunoprecipitation analysis. The combination of Deltahcr1 and rpg1-1 mutations resulted in a synthetic enhancement of the slow growth phenotype at a semipermissive temperature. In a computer search, a significant homology to the human p35 subunit of the eIF3 complex was found. We assume that the yeast Hcr1 protein participates in translation initiation likely as a protein associated with the eIF3 complex.  相似文献   

11.
Eukaryotic initiation factor (eIF) 4G plays an important role in assembling the initiation complex required for ribosome binding to an mRNA. Plants, animals, and yeast each express two eIF4G homologs, which share only 30, 46, and 53% identity, respectively. We have examined the functional differences between plant eIF4G proteins, referred to as eIF4G and eIFiso4G, when present as subunits of eIF4F and eIFiso4F, respectively. The degree to which a 5'-cap stimulated translation was inversely correlated with the concentration of eIF4F or eIFiso4F and required the poly(A)-binding protein for optimal function. Although eIF4F and eIFiso4F directed translation of unstructured mRNAs, eIF4F supported translation of an mRNA containing 5'-proximal secondary structure substantially better than did eIFiso4F. Moreover, eIF4F stimulated translation from uncapped monocistronic or dicistronic mRNAs to a greater extent than did eIFiso4F. These data suggest that at least some functions of plant eIFiso4F and eIF4F have diverged in that eIFiso4F promotes translation preferentially from unstructured mRNAs, whereas eIF4F can promote translation also from mRNAs that contain a structured 5'-leader and that are uncapped or contain multiple cistrons. This ability may also enable eIF4F to promote translation from standard mRNAs under cellular conditions in which cap-dependent translation is inhibited.  相似文献   

12.
Control of translation in eukaryotes is complex, depending on the binding of various factors to mRNAs. Available data for subsets of mRNAs that are translationally up- and down-regulated in yeast eIF4E-binding protein (4E-BP) deletion mutants are coupled with reported mRNA secondary structure measurements to investigate whether 5'-UTR secondary structure varies between the subsets. Genes with up-regulated translational efficiencies in the caf20Δ mutant have relatively high averaged 5'-UTR secondary structure. There is no apparent wide-scale correlation of RNA-binding protein preferences with the increased 5'-UTR secondary structure, leading us to speculate that the secondary structure itself may play a role in differential partitioning of mRNAs between eIF4E/4E-BP repression and eIF4E/eIF4G translation initiation. Both Caf20p and Eap1p contain stretches of positive charge in regions of predicted disorder. Such regions are also present in eIF4G and have been reported to associate with mRNA binding. The pattern of these segments, around the canonical eIF4E-binding motif, varies between each 4E-BP and eIF4G. Analysis of gene ontology shows that yeast proteins containing predicted disordered segments, with positive charge runs, are enriched for nucleic acid binding. We propose that the 4E-BPs act, in part, as differential, flexible, polyelectrostatic scaffolds for mRNAs.  相似文献   

13.
CDC37 is required for p60v-src activity in yeast.   总被引:6,自引:0,他引:6       下载免费PDF全文
Mutations in genes encoding the molecular chaperones Hsp90 and Ydj1p suppress the toxicity of the protein tyrosine kinase p60v-src in yeast by reducing its levels or its kinase activity. We describe isolation and characterization of novel p60v-src-resistant, temperature-sensitive cdc37 mutants, cdc37-34 and cdc37-17, which produce less p60v-src than the parental wild-type strain at 23 degrees C. However, p60v-src levels are not low enough to account for the resistance of these strains. Asynchronously growing cdc37-34 and cdc37-17 mutants arrest in G1 and G2/M when shifted from permissive temperatures (23 degrees C) to the restrictive temperature (37 degrees C), but hydroxyurea-synchronized cdc37-34 and cdc37-17 mutants arrest in G2/M when released from the hydroxyurea block and shifted from 23 to 37 degrees C. The previously described temperature-sensitive cdc37-1 mutant is p60v-src-sensitive and produces wild-type amounts of p60v-src at permissive temperatures but becomes p60v-src-resistant at its restrictive temperature, 38 degrees C. In all three cdc37 mutants, inactivation of Cdc37p by incubation at 38 degrees C reduces p60v-src-dependent tyrosine phosphorylation of yeast proteins to low or undetectable levels. Also, p60v-src levels are enriched in urea-solubilized extracts and depleted in detergent-solubilized extracts of all three cdc37 mutants prepared from cells incubated at the restrictive temperature. These results suggest that Cdc37p is required for maintenance of p60v-src in a soluble, biologically active form.  相似文献   

14.
To identify novel factors required for ER to Golgi transport in yeast we performed a screen for genes that, when mutated, confer a dependence on a dominant mutant form of the ER to Golgi vesicle docking factor Sly1p, termed Sly1-20p. DSL1 , a novel gene isolated in the screen, encodes an essential protein with a predicted molecular mass of 88 kDa. DSL1 is required for transport between the ER and the Golgi because strains bearing mutant alleles of this gene accumulate the pre-Golgi form of transported proteins at the restrictive temperature. Two strains bearing temperature-sensitive alleles of DSL1 display distinct phenotypes as observed by electron microscopy at the restrictive temperature; although both strains accumulate ER membrane, one also accumulates vesicles. Interestingly, the inviability of strains bearing several mutant alleles of DSL1 can be suppressed by expression of either Erv14p (a protein required for the movement of a specific protein from the ER to the Golgi), Sec21p (the γ-subunit of the COPI coat protein complex coatomer), or Sly1-20p. Because the strongest suppressor is SEC21 , we proposed that Dsl1p functions primarily in retrograde Golgi to ER traffic, although it is possible that Dsl1p functions in anterograde traffic as well, perhaps at the docking stage, as suggested by the suppression by SLY1-20 .  相似文献   

15.
Summary We have isolated new mutants of the yeast Saccharomyces cerevisiae that are defective in mitotic DNA synthesis. This was accomplished by directly screening 1100 newly isolated temperature-sensitive yeast clones for DNA synthesis defects. Ninety-seven different mutant strains were identified. Approximately half had the fast-stop DNA synthesis phenotype; synthesis ceased quickly after shifting an asynchronous population of cells to the restrictive temperature. The other half had an intermediate-rate phenotype; synthesis continued at a reduced rate for at least 3 h at the restrictive temperature. All of the DNA synthesis mutants continued protein synthesis at the restrictivetemperature. Genetic complementation analysis of temperature-sensitive segregants of these strains defined 60 apparently new complementation groups. Thirty-five of these were associated with the fast-stop phenotype, 25 with the intermediate-rate phenotype. The fast-stop groups are likely to include many genes whose products play direct roles in mitotic S phase DNA synthesis. Some of the intermediate-rate groups may be associated with S phase as well. This mutant collection should be very useful in the identification and isolation of gene products necessary for yeast DNA synthesis, in the isolation of the genes themselves, and in further analysis of the DNA replication process in vivo.  相似文献   

16.
Ribosome binding to eukaryotic mRNA is a multistep process which is mediated by the cap structure [m(7)G(5')ppp(5')N, where N is any nucleotide] present at the 5' termini of all cellular (with the exception of organellar) mRNAs. The heterotrimeric complex, eukaryotic initiation factor 4F (eIF4F), interacts directly with the cap structure via the eIF4E subunit and functions to assemble a ribosomal initiation complex on the mRNA. In mammalian cells, eIF4E activity is regulated in part by three related translational repressors (4E-BPs), which bind to eIF4E directly and preclude the assembly of eIF4F. No structural counterpart to 4E-BPs exists in the budding yeast, Saccharomyces cerevisiae. However, a functional homolog (named p20) has been described which blocks cap-dependent translation by a mechanism analogous to that of 4E-BPs. We report here on the characterization of a novel yeast eIF4E-associated protein (Eap1p) which can also regulate translation through binding to eIF4E. Eap1p shares limited homology to p20 in a region which contains the canonical eIF4E-binding motif. Deletion of this domain or point mutation abolishes the interaction of Eap1p with eIF4E. Eap1p competes with eIF4G (the large subunit of the cap-binding complex, eIF4F) and p20 for binding to eIF4E in vivo and inhibits cap-dependent translation in vitro. Targeted disruption of the EAP1 gene results in a temperature-sensitive phenotype and also confers partial resistance to growth inhibition by rapamycin. These data indicate that Eap1p plays a role in cell growth and implicates this protein in the TOR signaling cascade of S. cerevisiae.  相似文献   

17.
The poly(A)-binding protein Pab1p interacts directly with the eukaryotic translation initiation factor 4G (eIF4G) to facilitate translation initiation of polyadenylated mRNAs in yeast [1,2]. Although the eIF4G-PABP interaction has also been demonstrated in a mammalian system [3,4], its biological significance in vertebrates is unknown. In Xenopus oocytes, cytoplasmic polyadenylation of several mRNAs coincides with their translational activation and is critical for maturation [5-7]. Because the amount of PABP is very low in oocytes [8], it has been argued that the eIF4G-PABP interaction does not play a major role in translational activation during oocyte maturation. Also, overexpression of PABP in Xenopus oocytes has only a modest stimulatory effect on translation of polyadenylated mRNA and does not alter either the efficiency or the kinetics of progesterone-induced maturation [9]. Here, we report that the expression of an eIF4GI mutant defective in PABP binding in Xenopus oocytes reduces translation of polyadenylated mRNA and dramatically inhibits progesterone-induced maturation. Our results show that the eIF4G-PABP interaction is critical for translational control of maternal mRNAs during Xenopus development.  相似文献   

18.
Conditional Mutants of Meiosis in Yeast   总被引:20,自引:9,他引:11       下载免费PDF全文
Three temperature-sensitive mutants, spo1-1, spo2-1, and spo3-1, were characterized with respect to their behavior in sporulation medium at a restrictive temperature. The time of expression of the functions defective in the mutants was determined by temperature-shift experiments during the sporulation process. In addition, each mutant was examined for the following: (i) its ability to undergo the nuclear divisions of meiosis; (ii) deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein synthesis; (iii) protein turnover; and (iv) colony-forming ability after exposure to sporulation medium. Mutant spo1-1 is defective in a function which confers a temperature-sensitive period which extends over 32% of the sporulation cycle. The temperature-sensitive period of mutant spo2-1 occupies 34% of the cycle, whereas the temperature-sensitive period of mutant spo3-1 extends over 2% of the sporulation cycle. Cytological evidence indicates that all three mutants initiate but do not complete the meiotic nuclear divisions. The DNA content of sporulation cultures of mutants spo1-1 and spo3-1 did not increase to the wild-type level; DNA synthesis in spo2-1 was normal. All three strains exhibit a loss of colony-forming ability during incubation in sporulation medium at the restrictive temperature. RNA and protein synthesis and protein turnover occur in the mutants.  相似文献   

19.
20.
H Imataka  A Gradi    N Sonenberg 《The EMBO journal》1998,17(24):7480-7489
Most eukaryotic mRNAs possess a 5' cap and a 3' poly(A) tail, both of which are required for efficient translation. In yeast and plants, binding of eIF4G to poly(A)-binding protein (PABP) was implicated in poly(A)-dependent translation. In mammals, however, there has been no evidence that eIF4G binds PABP. Using 5' rapid amplification of cDNA, we have extended the known human eIF4GI open reading frame from the N-terminus by 156 amino acids. Co-immunoprecipitation experiments showed that the extended eIF4GI binds PABP, while the N-terminally truncated original eIF4GI cannot. Deletion analysis identified a 29 amino acid sequence in the new N-terminal region as the PABP-binding site. The 29 amino acid stretch is almost identical in eIF4GI and eIF4GII, and the full-length eIF4GII also binds PABP. As previously shown for yeast, human eIF4G binds to a fragment composed of RRM1 and RRM2 of PABP. In an in vitro translation system, an N-terminal fragment which includes the PABP-binding site inhibits poly(A)-dependent translation, but has no effect on translation of a deadenylated mRNA. These results indicate that, in addition to a recently identified mammalian PABP-binding protein, PAIP-1, eIF4G binds PABP and probably functions in poly(A)-dependent translation in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号