首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The types and subunit composition of cAMP-dependent protein kinases in soluble rat ovarian extracts were investigated. Results demonstrated that three peaks of cAMP-dependent kinase activity could be resolved using DEAE-cellulose chromatography. Based on the sedimentation of cAMP-dependent protein kinase and regulatory subunits using sucrose density gradient centrifugation, identification of 8-N3[32P]cAMP labeled RI and RII in DEAE-cellulose column and sucrose gradient fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Scatchard analysis of the cAMP-stimulated activation of the eluted peaks of kinase activity, the following conclusions were drawn regarding the composition of the three peaks of cAMP-dependent protein kinase activity: peak 1, eluting with less than or equal to 0.05 M potassium phosphate, consisted of the type I form of cAMP-dependent protein kinase; peak 2, eluting with 0.065-0.11 M potassium phosphate, consisted of free RI and a type II tetrameric holoenzyme; peak 3, eluting with 0.125 M potassium phosphate, consisted of an apparent RIIC trimer, followed by the elution with 0.15 M potassium phosphate of free RII. The regulatory subunits were confirmed as authentic RI and RII based upon their molecular weights and autophosphorylation characteristics. The more basic elution of the type II holoenzyme with free RI was not attributable to the ionic properties of the regulatory subunits, based upon the isoelectric points of photolabeled RI and RII and upon the elution location from DEAE-cellulose of RI and RII on dissociation from their respective holoenzymes by cAMP. This is the first report of a type II holoenzyme eluting in low salt fractions with free RI, and of the presence of an apparent RIIC trimer in a soluble tissue extract.  相似文献   

2.
The mammalian cAMP-dependent protein kinases have regulatory (R) subunits that show substantial homology in amino acid sequence with the catabolite gene activator protein (CAP), a cAMP-dependent gene regulatory protein from Escherichia coli. Each R subunit has two in-tandem cAMP binding domains, and the structure of each of these domains has been modeled by analogy with the crystal structure of CAP. Both the type I and II regulatory subunits have been considered, so that four cAMP binding domains have been modeled. The binding of cAMP in general is analogous in all the structures and has been correlated with previous results based on photolabeling and binding of cAMP analogues. The model predicts that the first cAMP binding domain correlates with the previously defined fast dissociation site, which preferentially binds N6-substituted analogues of cAMP. The second domain corresponds to the slow dissociation site, which has a preference for C8-substituted analogues. The model also is consistent with cAMP binding in the syn conformation in both sites. Finally, this model has targeted specific regions that are likely to be involved in interdomain contacts. This includes contacts between the two cAMP binding domains as well as contacts with the amino-terminal region of the R subunit and with the catalytic subunit.  相似文献   

3.
Retinoylation (retinoic acid acylation) is a post-translational modification of proteins occurring in a variety of eukaryotic cell lines. There are at least 20 retinoylated proteins in the human myeloid leukemia cell line HL60 (N. Takahashi and T.R. Breitman (1990) J. Biol. Chem. 265, 19, 158-19, 162). Here we found that some retinoylated proteins may be cAMP-binding proteins. Five proteins, covalently labeled by 8-azido-[32P]cAMP which specifically reacts with the regulatory subunits of cAMP-dependent protein kinase, comigrated on two-dimensional polyacrylamide gel electrophoresis with retinoylated proteins of Mr 37,000 (p37RA), 47,000 (p47RA), and 51,000 (p51RA) labeled by [3H]retinoic acid treatment of intact cells. Furthermore, p47RA coeluted on Mono Q anion exchange chromatography with the type I cAMP-dependent protein kinase holoenzyme and p51RA coeluted on Mono Q anion exchange chromatography with the type II cAMP-dependent protein kinase holoenzyme. An antiserum specific to RI, the cAMP-binding regulatory subunit of type I cAMP-dependent protein kinase, immunoprecipitated p47RA. An antiserum specific to RII, the cAMP-binding regulatory subunit of type II cAMP-dependent protein kinase, immunoprecipitated p51RA. These results indicate that both the RI and the RII regulatory subunits of cAMP-dependent protein kinase are retinoylated. Thus, an early event in RA-induced differentiation of HL60 cells may be the retinoylation of subpopulations of both RI and RII.  相似文献   

4.
Mammalian tissues and cell lines express two major types of cAMP-dependent protein kinase, PKA-I and PKA-II, which can be distinguished at the molecular level by the presence of either type I or type II regulatory subunits in the holoenzyme. An expression vector for the mouse type II regulatory subunit (RII alpha) was transfected into ras-transformed NIH3T3 (R3T3) cells, which contain approximately equal amounts of both holoenzymes, PKA-I and PKA-II. In RII alpha-overexpressing R3T3 cells, PKA-II levels were increased, and the level of PKA-I declined. The decrease in PKA-I was dependent on the amount of RII alpha expressed, and at high levels of RII alpha expression, PKA-I was completely eliminated. In contrast, overexpression of the type I regulatory subunit (RI alpha) did not alter PKA isozyme levels. We propose that competition between RII alpha and RI alpha for a limited pool of catalytic subunit results in preferential assembly of PKA-II and that significant amounts of PKA-I are formed only if catalytic subunit is present in excess of the RII alpha subunit. The PKA-I isozyme, which is absent in untransformed 3T3 cells, is not essential for the transformed phenotype of R3T3 cells. RII alpha-overexpressing R3T3 cells that are devoid of PKA-I continued to exhibit a transformed phenotype including anchorage-independent growth. Overexpression of RII alpha provides a genetic approach that may prove useful in demonstrating specific functions for the two PKA isozymes in cAMP-dependent signal transduction pathways.  相似文献   

5.
K K Linask  R M Greene 《Life sciences》1989,45(20):1863-1868
Mammalian palatal ontogeny involves epithelial-mesenchymal interactions, cell differentiation, and cell movements. These events occur on days 12, 13, and 14 of gestation in the C57BL/6J mouse embryo. During this period intracellular cAMP levels and cAMP-dependent protein kinase (cAMP-dPK) levels in the palate transiently elevate. Cyclic AMP activates cAMP-dPK by binding primarily to two types of regulatory subunits of this enzyme, designated as RI and RII. To assess whether differential compartmentalization of the regulatory subunits occurs during palatal ontogeny, cytosolic, nuclear, and particulate fractions were prepared from day 12, 13, and 14 embryonic maxillary and palatal tissue. After photo-affinity labeling of each fraction with 8-azido [32P] cAMP, SDS-PAGE, and autoradiography, autoradiograms were analyzed densitometrically. The RI isoform predominated in the nuclear and particulate fractions on all three developmental days; whereas RII predominated in the cytosolic fractions. Thus, differential compartmentalization of cAMP-dPK may be a means by which cAMP dependent responses are regulated during palatogenesis.  相似文献   

6.
Experiments on the introduction of the regulatory subunit of cAMP-dependent protein kinase type II (RII) into NIH 3T3 cells clearly demonstrated its translocation into the nucleus. The labelled protein was incorporated into erythrocyte ghosts and their fusion with the cells was carried out. The dynamics of distribution of the labelled RII in NIH 3T3 cells was studied by the method of historadiography. It was found that during the next few hours after its penetration into the cytoplasm, the protein translocates into the nucleus and concentrates in the immediate proximity to the nucleoli.  相似文献   

7.
We have reported previously (Horowitz, J. A., Toeg, H., and Orr, G. A. (1984) J. Biol. Chem. 259, 832-838) that most of the type II cAMP-dependent protein kinases in rat sperm are associated with the flagellum. We have now identified flagellar polypeptides which are capable of forming tight complexes with the regulatory subunit of type II cAMP-dependent protein kinase (RII). Flagellar RII-binding polypeptides were identified using an RII overlay/immunoblot procedure and had apparent subunit Mr of 120,000, 80,000, and 57,000 in rat and 120,000 and 57,000 in bovine flagella. RII is released from the flagellum by disulfide reducing agents, e.g. 1 mM dithiothreitol (DTT). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie Blue staining of the DTT-released material shows that a limited subpopulation of flagellar polypeptides are solubilized by disulfide-reducing agents. Neither tubulin, the dynein ATPase, or any of the RII-binding proteins are released by 1 mM DTT, and thin section electron microscopy revealed that the morphology of the flagellum is unaltered by reducing conditions. Our data established that RII is not linked to the flagellum via a direct disulfide bridge. We propose that RII is released from the flagellum, a highly disulfide cross-linked structure, due to structural changes in the flagellum which disrupts the interaction between RII and its binding proteins.  相似文献   

8.
The molecular basis for altered cyclic AMP-dependent protein kinase activity was examined in three different mutant clones (Kin-1, Kin-7, and Kin-8) derived from the Y1 mouse adrenocortical cell line. Parental Y1 cells and the Kin mutants were labeled with L-[35S] methionine and the regulatory subunit of the type 1 cAMP-dependent protein kinase isozyme (RI) was immunoprecipitated from each clone with a specific guinea pig antiserum. When analyzed by electrophoresis on isoelectric focusing gels, the immunoprecipitates from mutant clones exhibited parental forms of RI plus an additional acidic variant form which likely accounted for altered cAMP-dependent protein kinase activity. Poly(A+) RNA was isolated from Y1 and Kin mutant cells and was translated in a cell-free, reticulocyte lysate system in the presence of L-[35S]methionine. The RI synthesized from poly(A+) RNA was immunoprecipitated from the translation mixture and analyzed on isoelectric focusing gels. The poly(A+) RNA from the Kin mutant clones directed the synthesis of parental and acidic variant forms of RI. These results suggest that the altered electrophoretic forms of RI arise from mutations in one of two RI genes rather than from post-translational modifications of the protein. The coexistence of parental and variant forms of RI in the Kin mutants indicate that the mutations are codominant.  相似文献   

9.
A monoclonal antibody was used to quantitate changes in the extent of phosphorylation of the type II regulatory subunit of cAMP-dependent protein kinase in intact bovine tracheal smooth muscle. The autophosphorylated and nonphosphorylated forms of the regulatory subunit (RII) were separated in sodium dodecyl sulfate-polyacrylamide gels and identified by immunoblot analysis. Addition of cAMP to tissue extracts resulted in rapid dephosphorylation of RII (t 1/2 = 20s at 4 degrees C) while addition of MgATP caused complete conversion to the phosphorylated form. Under basal conditions, 56% of RII in intact muscle was phosphorylated when the tissue was homogenized under conditions which fully inhibit protein kinase and phosphatase activities. Incubation with isoproterenol caused a dose-dependent decrease in the phosphorylation state of RII (EC50 = 5 X 10(-8) M). Incubation with high concentrations of isoproterenol, 1-methyl-3-isobutylxanthine, or forskolin caused maximal decreases in the phosphorylated form to 12-18% of the total RII. The effect of isoproterenol was rapid (t 1/2 = 15 s at 37 degrees C), reversible, and could be blocked with the antagonist propranolol. Contraction of the smooth muscle with K+ or low (less than 1 microM) concentrations of carbachol had no effect on the phosphorylation level. A decrease in the basal phosphorylation level to 41% was observed with 10 microM carbachol which was additive with the dephosphorylation produced by isoproterenol. The time course of isoproterenol-induced dephosphorylation of RII paralleled that of muscle relaxation, consistent with a role of cAMP-dependent protein kinase activation in relaxation of smooth muscle.  相似文献   

10.
D R Johnson  S S Wong 《FEBS letters》1989,247(2):480-482
The effect of cAMP on the conformation of the regulatory subunit of type II cAMP-dependent protein kinase (RII) from bovine heart was investigated by UV-difference and circular dichroism (CD) spectroscopy. The UV-difference spectrum of RII with and without cAMP showed a positive band around 278 nm and a negative band at 256 nm. Similarly, cAMP enhanced the ellipticity of RII in the region between 280 and 300 nm and decreased that between 250 and 280 nm. In addition, cAMP transformed the far-UV CD spectrum of RII from that of a negative band minimally at 209 nm with a shoulder at 223 nm to one with two minima at 222 and 211 nm. These data show that cAMP induces conformational changes of RII upon binding. Such structural changes may be the basis of activation of cAMP-dependent protein kinases by cAMP.  相似文献   

11.
We report here the isolation and sequence of a cDNA for the type II regulatory subunit of the cAMP-dependent protein kinase (cAMP-PK) from a lambda gt-11 cDNA library derived from a porcine epithelial cell line (LLC-PK1). The cDNA was detected by immunological screening using an affinity purified polyclonal antibody for bovine RII. DNA sequence analysis of the 467 bp EcoRI insert confirmed the identity of the clone, because the deduced amino acid sequence corresponded to the published sequence for the bovine RII protein. Northern analysis of total RNA from the LLC-PK1 cells indicated a single mRNA species of about 6.0 kb, probably derived from a single copy gene.  相似文献   

12.
Two-dimensional polyacrylamide gel electrophoresis is used to visualize the regulatory subunit of cAMP-dependent protein kinase from cultured S49 mouse lymphoma cells and to demonstrate its in vivo phosphorylation. Regulatory subunits from mutant cells with altered kinases exhibit at least two patterns of charge shifts consistent with substitutions of single amino acids. The direct demonstration of structural alteration of this protein provides strong evidence for structural gene mutation in this cultured cell system. While mutant and wild-type gene products co-exist in the mutant cells, there is apparently preferential expression and phosphorylation of mutant subunit in these heterozygotes.  相似文献   

13.
A monoclonal antibody was prepared against the regulatory subunit (RII) of rat liver type II cAMP-dependent protein kinase. Autophosphorylated and nonphosphorylated RII in extracts from rat liver or hepatocytes were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and quantified by immunoblot analysis with this antibody. Under basal conditions, 90% of hepatocyte RII was in the phosphorylated form. Incubating hepatocytes with 8-bromo-cAMP and a phosphodiesterase inhibitor resulted in activation of cAMP-dependent protein kinase and glycogenolysis but did not affect phospho RII levels. RII phosphorylation was also unaffected by the inclusion of sufficient insulin to cause a decrease in cAMP-dependent protein kinase activity and glycogenolysis. The results indicate that unlike other cell types, dissociation of rat hepatocyte type II cAMP-dependent protein kinase does not result in dephosphorylation of RII. The biochemical basis for the apparent lack of RII dephosphorylation in intact hepatocytes was examined by comparison with smooth muscle where RII is rapidly dephosphorylated. Rat liver extract contained 4-fold less RII and had an 80-fold lower rate of dephosphorylation of endogenous RII compared to bovine smooth muscle extract. The differences in the rates of RII dephosphorylation in tissue extracts were not observed using purified RII from either tissue. These data suggested that the slow rate of RII dephosphorylation in rat hepatocytes is due to a difference in the susceptibility of endogenous rat liver RII to dephosphorylation rather than a difference in phosphatase activity.  相似文献   

14.
BACKGROUND: Cyclic AMP binding domains possess common structural features yet are diversely coupled to different signaling modules. Each cAMP binding domain receives and transmits a cAMP signal; however, the signaling networks differ even within the same family of regulatory proteins as evidenced by the long-standing biochemical and physiological differences between type I and type II regulatory subunits of cAMP-dependent protein kinase. RESULTS: We report the first type II regulatory subunit crystal structure, which we determined to 2.45 A resolution and refined to an R factor of 0.176 with a free R factor of 0.198. This new structure of the type II beta regulatory subunit of cAMP-dependent protein kinase demonstrates that the relative orientations of the two tandem cAMP binding domains are very different in the type II beta as compared to the type I alpha regulatory subunit. Each structural unit for binding cAMP contains the highly conserved phosphate binding cassette that can be considered the "signature" motif of cAMP binding domains. This motif is coupled to nonconserved regions that link the cAMP signal to diverse structural and functional modules. CONCLUSIONS: Both the diversity and similarity of cAMP binding sites are demonstrated by this new type II regulatory subunit structure. The structure represents an intramolecular paradigm for the cooperative triad that links two cAMP binding sites through a domain interface to the catalytic subunit of cAMP-dependent protein kinase. The domain interface surface is created by the binding of only one cAMP molecule and is enabled by amino acid sequence variability within the peptide chain that tethers the two domains together.  相似文献   

15.
16.
Immunochemical analysis of the cAMP-dependent protein kinase regulatory subunit type II was performed with the use of two rabbit antisera elicited to a free R-subunit from pig brain and to a RcAMP complex. Quantitative precipitation of the homogeneous antigen revealed six determinants on the R-molecule. Of these at least one is localized in the R-fragment (37 kD), the others--in the N-terminal part of the R-molecule. The antigenic determinants seem to be remoted from the cAMP-binding centers, since the attachment of the affinity purified antibody Fab-fragments to the R-subunit did not influence the cAMP-binding activity of the latter. The antibodies to RcAMP caused dissociation of the holoenzyme. The antibody Fab-fragment binding to the R-subunit prevented its association with the catalytic subunit. The results of immunochemical analysis suggest that the R-subunit adopts different conformations when bound to cAMP or to the catalytic subunit.  相似文献   

17.
Previously, we have reported a defect in the cAMP-dependent protein kinases (cAMP-PK) in psoriatic cells (i.e., a decrease in 8-azido-[32P]cAMP binding to the regulatory subunits and a decrease in phosphotransferase activity) which is rapidly reversed with retinoic acid (RA) treatment of these cells. This led us to examine a possible direct interaction between retinoids and the RI and RII regulatory subunits through retinoylation. Retinoylation of RI and RII present in normal and psoriatic human fibroblasts was analysed by [3H]RA treatment of these cells, followed either by chromatographic separation of the regulatory subunits or by their specific immunoprecipitation. These studies indicated that RI and RII can be retinoylated. [3H]RA labeling of the RII subunit was significantly (P < 0.005) greater in psoriatic fibroblasts (nine subjects; mean 7.47 relative units ± 1.37 SEM) compared to normal fibroblasts (eight subjects; mean 2.46 relative units ± 0.49 SEM). [3H]RA labeling of and the increase in 8-azido-[32P]-binding to the RI and RII subunit in psoriatic fibroblasts showed a similar time course. This suggests that the rapid effect of retinoic acid treatment to enhance 8-azido-[32P]-cAMP binding to the RI and RII in psoriatic fibroblasts may be due, in part, to covalent modification of the regulatory subunits by retinoylation. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Monoclonal antibodies to the regulatory subunit of cAMP-dependent protein kinase type II from porcine brain were used to study the antigenic properties of the enzyme regulatory subunit (RII). The monoclonal antibodies were bound to linear antigenic determinants on the protein molecule surface. The cAMP binding to RII interfered with the interaction between monoclonal antibodies and the protein. The use of different proteolytic fragments of RII allowed for the localization of antigenic determinants in the N-terminal moiety of RII.  相似文献   

19.
Previous independent studies suggested that type II cAMP-dependent protein kinase and the p34cdc2 protein kinase cell cycle regulator co-localize at centrosomes. In order to investigate whether there is an association of type II cAMP-dependent protein kinase with p34cdc2 in human fibroblasts, we used three different approaches. First, the regulatory subunits RI and RII were photoaffinity-labeled with 8-N3-[32P]cAMP, and anti-p34cdc2 immunoprecipitates were screened for the presence of either RI or RII regulatory subunits by one- or two-dimensional gel electrophoresis. Second, anti-RII alpha immunoprecipitates were screened for the presence of p34cdc2 by Western blot using three different affinity-purified antibodies recognizing different domains of human p34cdc2. Conversely, anti-p34cdc2 immunoprecipitates (three different antibodies), as well as the material retained on p13suc1-Sepharose Bio-Beads, which binds specifically p34cdc2, were screened for the presence of RII alpha. Finally, we have looked for cAMP-dependent protein kinase activity specifically inhibited by PKI in immunoprecipitates obtained from extracts treated with different anti-p34cdc2 antibodies. All these experiments gave concordant results and demonstrate that at least at G0/G1, human fibroblasts contain a complex of active type II cAMP-dependent protein kinase associated through its RII alpha subunit with p34cdc2.  相似文献   

20.
An expression vector has been constructed for the type I regulatory subunit of cAMP-dependent protein kinase. A cDNA clone for the bovine RI-subunit has been inserted into pUC7. When Escherichia coli JM105 was transformed with this plasmid, R-subunit was expressed in amounts that approached 4 mg/liter. The expressed protein was visualized in total cell extracts by photolabeling with 8-azidoadenosine 3':5'-mono[32P]phosphate following transfer from sodium dodecyl sulfate-polyacrylamide gels to nitrocellulose. Expression of R-subunit was independent of isopropyl-beta-D-thiogalactopyranoside. R-subunit accumulated in large amounts only in the stationary phase of growth, and the addition of isopropyl-beta-D-thiogalactopyranoside during the log phase of growth actually blocked the accumulation of R-subunit. Maximum expression (20 mg/liter) was achieved when E. coli 222 was transformed with the RI-containing plasmid. E. coli 222 is a strain that contains two mutations; it is cya- and also has a mutation in the catabolite gene activator protein (crp) that enables the protein to bind to DNA in the absence of cAMP. The expressed RI-subunit was a soluble, dimeric protein, and no significant proteolysis was apparent in the cell extract. The purified RI-subunit bound 2 mol of cAMP/mol of R monomer, reassociated with C-subunit to form holoenzyme, and migrated as a dimer on sodium dodecyl sulfate-polyacrylamide gels in the absence of reducing agents. The expressed protein was also susceptible to limited proteolysis, yielding a monomeric cAMP-binding fragment having a molecular weight of 35,000. In all of these properties, the expressed protein was indistinguishable from RI purified from bovine tissue even though the R-subunit expressed in E. coli represents a fusion protein that contains 10 additional amino acids at the amino terminus that are provided by the lac Z' gene of the vector. This NH2-terminal sequence was confirmed by amino acid sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号