首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 2 Diabetes Mellitus with insulin resistance, pancreatic β cell dysfunction, and hepatic glucose overproduction is increasing in epidemic proportions worldwide. G protein-coupled receptor 40 (GPR40), a clinically proven anti-diabetic drug target, is mainly expressed in pancreatic β cells and insulin-secreting cell lines. Long chain fatty acids (LCFA) increase intracellular calcium concentration and amplify glucose-stimulated insulin secretion by activating GPR40. Here we report that the arginine 104 (R104) is critical for the normal function of GPR40. Mutation of R104 to Proline (R104P) results in complete loss of the receptor function. Linoleic acid, ligand of GPR40, could not elicit calcium increase and ERK phosphorylation in cells expressing this mutant receptor. Further study indicated the R104P mutation reduces cell surface localization of GPR40 without affecting the expression of the protein. The small portion of GPR40 R104P mutant that is still located on the membrane has no physiological function, and does not internalize in response to linoleic acid stimulation. These data demonstrate that R104 in GPR40 is critically involved in the normal receptor functions. Interestingly, R104P is a registered single-nucleotide polymorphism of GPR40. The relationship of this GPR40 variant and type 2 diabetes warrants further investigation.  相似文献   

2.
The free fatty acid receptor, GPR40, is implicated in the pathophysiology of type 2 diabetes, and is a new potential drug target for the treatment of type 2 diabetes. Its antagonist is thought to be not only a useful chemical probe for further exploring the function of GPR40 but also a lead structure for drug development. With virtual screening based on a homology model followed by a cell-based calcium mobilization assay, we found that sulfonamides are a new class of small organic antagonists for GPR40. One of the compounds, DC260126, dose-dependently inhibited GPR40-mediated Ca2+ elevations stimulated by linoleic acid, oleic acid, palmitoleic acid and lauric acid (IC50: 6.28 ± 1.14, 5.96 ± 1.12, 7.07 ± 1.42, 4.58 ± 1.14 μM, respectively), reduced GTP-loading and ERK1/2 phosphorylation stimulated by linoleic acid in GPR40-CHO cells, suppressed palmitic acid potentiated glucose-stimulated insulin secretion, and negatively regulated GPR40 mRNA expression induced by oleic acid in Min6 cells.  相似文献   

3.
The discovery that certain long chain fatty acids potentiate glucose stimulated insulin secretion through the previously orphan receptor GPR40 sparked interest in GPR40 agonists as potential antidiabetic agents. Optimization of a series of β-substituted phenylpropanoic acids led to the identification of (S)-3-(4-((4'-(trifluoromethyl)biphenyl-3-yl)methoxy)phenyl)hex-4-ynoic acid (AMG 837) as a potent GPR40 agonist with a superior pharmacokinetic profile and robust glucose-dependent stimulation of insulin secretion in rodents.  相似文献   

4.
A classical drug repurposing approach was applied to find new putative GPR40 allosteric binders. A two-step computational protocol was set up, based on an initial pharmacophoric-based virtual screening of the DrugBank database of known drugs, followed by docking simulations to confirm the interactions between the prioritised compounds and GPR40. The best-ranked entries showed binding poses comparable to that of TAK-875, a known allosteric agonist of GPR40. Three of them (tazarotenic acid, bezafibrate, and efaproxiral) affect insulin secretion in pancreatic INS-1 832/13 β-cells with EC50 in the nanomolar concentration (5.73, 14.2, and 13.5 nM, respectively). Given the involvement of GPR40 in type 2 diabetes, the new GPR40 modulators represent a promising tool for therapeutic intervention towards this disease. The ability to affect GPR40 was further assessed in human breast cancer MCF-7 cells in which this receptor positively regulates growth activities (EC50 values were 5.6, 21, and 14 nM, respectively).  相似文献   

5.
The free fatty acid receptor, GPR40, has been coupled with insulin secretion via its expression in pancreatic beta-cells. However, the role of GPR40 in the release of glucagon has not been studied and previous attempts to identify the receptor in alpha-cells have been unfruitful. Using double-staining for glucagon and GPR40 expression, we demonstrate that the two are expressed in the same cells in the periphery of mouse islets. In-R1-G9 hamster glucagonoma cells respond dose-dependently to linoleic acid stimulation by elevated phosphatidyl inositol hydrolysis and glucagon release and the cells become increasingly responsive to fatty acid stimulation when overexpressing GPR40. Isolated mouse islets also secrete glucagon in response to linoleic acid, a response that was abolished by antisense treatment against GPR40. This study demonstrates that GPR40 is present and active in pancreatic alpha-cells and puts further emphasis on the importance of this nutrient sensing receptor in islet function.  相似文献   

6.
一个潜在的糖尿病新靶标——GPR40   总被引:3,自引:1,他引:2  
G蛋白偶联受体40(GPR40)是典型的七次跨膜受体,在游离脂肪酸的刺激下,它能起到放大葡萄糖刺激的胰岛素分泌效应,是一种潜在的治疗糖尿病药物的靶标。另外,GPR40还被认为和一些神经类疾病以及某些癌症有关。本文着重叙述了游离脂肪酸经由GPR40放大葡萄糖刺激的胰岛素分泌机制,同时也介绍了GPR40的其他一些生理功能。  相似文献   

7.
GPR40 partial agonism is a promising new mechanism for the treatment of type 2 diabetes mellitus with clinical proof of concept. Most of the GPR40 agonists in the literature have a carboxylic acid functional group, which may pose a risk for idiosyncratic drug toxicity. A novel series of GPR40 agonists containing a tetrazole as a carboxylic acid bioisostere was identified. This series of compounds features a benzo[b]thiophene as the center ring, which is prone to oxidation during phase 1 metabolism. Following SAR optimization targeting GPR40 agonist activity and intrinsic clearance in microsomes (human and rat), potent and metabolically stable compounds were selected for in vivo evaluation. The compounds are efficacious at lowering blood glucose in a SD rat oGTT model.  相似文献   

8.
Abstract

Diabetes is a major health problem worldwide predisposing to increased mortality and morbidity. The current antidiabetic therapies have serious side effects and thus have emphasis on further need to develop effective medication therapy. Free fatty acid1 receptor (FFA1R) or G-protein-coupled receptor 40 (GPR40) represents an interesting target for developing novel antidiabetic drug. In the current study, the FFA1R agonistic activity of drug-like molecules was screened by employing pharmacophore modeling, docking, and molecular dynamics (MD) simulation. Hierarchical screening of virtual library of drug-like compounds was performed. This combined computational approach of pharmacophore mapping and structure-based approach was used to identify common hits, and the absorption, distribution, metabolism and excretion (ADME) prediction supported the analysis of their pharmacokinetic potential. MD simulation studies of the GPR40 complex with the most promising hit found in this study further validated are approached. The key residues Arg183, Arg258, Tyr91, and Tyr240 of the binding pocket were acknowledged as essential and were found to be associated in the key interactions with the most potential hit. These studies will hopefully provide scope for efficiently designing and screening new compounds as active drug candidates with more selectivity for hGPR40. To the best of our knowledge, this is the first example of the successful application of both ligand and structurebased virtual-screening techniques to discover novel GPR40 agonists.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
In this letter, we report discovery of diacylphloroglucinol compounds as a new class of GPR40 (FFAR1) agonists. Several diacylphloroglucinols with varying length of acyl functionality and substitution on aromatic hydroxyls were synthesized and evaluated for GPR40 agonism using functional calcium-flux assay. Out of 17 compounds evaluated, 14, 17, 19 and 25 exhibited good GPR40 agonistic activity with EC(50) values ranging from 0.07 to 8 microM (pEC(50) 7.12-5.09), respectively, with maximal agonistic response of 84-102%.  相似文献   

10.
Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca2+]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease.  相似文献   

11.
12.
The design, synthesis, and structure-activity relationship (SAR) for a series of β-substituted 3-(4-aryloxyaryl)propanoic acid GPR40 agonists is described. Systematic replacement of the pendant aryloxy group led to identification of potent GPR40 agonists. In order to identify candidates suitable for in vivo validation of the target, serum shifted potency and pharmacokinetic properties were determined for several compounds. Finally, further profiling of compound 7 is presented, including demonstration of enhanced glucose tolerance in an in vivo mouse model.  相似文献   

13.
Free fatty acids (FFAs) play important physiological roles in many tissues as an energy source and as signaling molecules in various cellular processes. Elevated levels of circulating FFAs are associated with obesity, dyslipidemia, and diabetes. Here we show that GPR84, a previously orphan G protein-coupled receptor, functions as a receptor for medium-chain FFAs with carbon chain lengths of 9-14. Medium-chain FFAs elicit calcium mobilization, inhibit 3',5'-cyclic AMP production, and stimulate [35S]guanosine 5'-O-(3-thiotriphosphate) binding in a GPR84-dependent manner. The activation of GPR84 by medium-chain FFAs couples primarily to a pertussis toxin-sensitive G(i/o) pathway. In addition, we show that GPR84 is selectively expressed in leukocytes and markedly induced in monocytes/macrophages upon activation by lipopolysaccharide. Furthermore, we demonstrate that medium-chain FFAs amplify lipopolysaccharide-stimulated production of the proinflammatory cytokine interleukin-12 p40 through GPR84. Our results indicate a role for GPR84 in directly linking fatty acid metabolism to immunological regulation.  相似文献   

14.
The poorly characterized G-protein-coupled receptor GPR35 has been suggested as a potential exploratory target for the treatment of both metabolic disorders and hypertension. It has also been indicated to play an important role in immune modulation. A major impediment to validation of these concepts and further study of the role of this receptor has been a paucity of pharmacological tools that interact with GPR35. Using a receptor-β-arrestin-2 interaction assay with both human and rat orthologues of GPR35, we identified a number of compounds possessing agonist activity. These included the previously described ligand zaprinast. Although a number of active compounds, including cromolyn disodium and dicumarol, displayed similar potency at both orthologues of GPR35, a number of ligands, including pamoate and niflumic acid, had detectable activity only at human GPR35 whereas others, including zaprinast and luteolin, were markedly selective for the rat orthologue. Previous studies have demonstrated activation of Gα13 by GPR35. A Saccharomyces cerevisiae-based assay employing a chimaeric Gpa1-Gα13 G-protein confirmed that all of the compounds active at human GPR35 in the β-arrestin-2 interaction assay were also able to promote cell growth via Gα13. Each of these ligands also promoted binding of [35S]GTP[S] (guanosine 5'-[γ-[35S]thio]triphosphate) to an epitope-tagged form of Gα13 in a GPR35-dependent manner. The ligands identified in these studies will be useful in interrogating the biological actions of GPR35, but appreciation of the species selectivity of ligands at this receptor will be vital to correctly attribute function.  相似文献   

15.
Key metabolites act through specific G protein-coupled receptors (GPCRs) as extracellular signals of fuel availability and metabolic stress. Here, we focus on the succinate receptor SUCNR1/GPR91 and the long chain fatty acid receptor FFAR1/GPR40, for which 3D structural information is available. Like other small polar acidic metabolites, succinate is excreted from the cell by transporter proteins to bind to an extracellular, solvent-exposed pocket in SUCNR1. Non-metabolite pharmacological tool compounds are currently being designed based on the structure of the SUCNR1 binding pocket. In FFAR1, differently signaling lipid mimetics bind in two distinct membrane-exposed sites corresponding to each of the lipid bilayer leaflets. Conceivably endogenous lipid ligands gain access to these sites by way of the membrane and probably occupy both sites under physiological circumstances. Design of polar agonists for a dynamic, solvent-exposed pocket in FFAR1 underlines the possibility of structure-based approaches for development of novel tool compounds even in lipid sensing metabolite GPCRs.  相似文献   

16.
Free fatty acids (FFAs) provide an important energy source and also act as signaling molecules. FFAs are known to exert a variety of physiological responses via their G protein-coupled receptors (GPCRs), such as the GPR40 family. Recently, we identified a novel FFA receptor, GPR120, that promotes secretion of glucagon-like peptide-1 (Hirasawa, A., Tsumaya, K., Awaji, T., Katsuma, S., Adachi, T., Yamada, M., Sugimoto, Y., Miyazaki, S., and Tsujimoto, G. (2005) Nat. Med. 11, 90-94). Here we showed that FFAs inhibit serum deprivation-induced apoptosis of murine enteroendocrine STC-1 cells, which express two types of GPCRs, GPR120 and GPR40, for unsaturated long chain FFA. We first found that linolenic acid potently activated ERK and Akt/protein kinase B (Akt) in STC-1 cells. ERK kinase inhibitors significantly reduced the anti-apoptotic effects of linolenic acid. Inhibitors for phosphatidylinositol 3-kinase (PI3K), a major target of which is Akt, significantly reduced the anti-apoptotic effects. Transfection of STC-1 cells with the dominant-negative form of Akt also inhibited the anti-apoptotic effect. These results suggested that the activation of ERK and PI3K-Akt pathways is required for FFA-induced anti-apoptotic effects on STC-1 cells. Transient transfection of STC-1 cells with GPR120 cDNA, but not GPR40 cDNA, enhanced inhibition of caspase-3 activation. RNA interference experiments showed that reduced expression of GPR120, but not GPR40, resulted in reduced ERK activation and reduced effects of FFAs on caspase-3 inhibition. Collectively, these results demonstrated that FFAs promote the activation of ERK and PI3K-Akt pathways mainly via GPR120, leading to the anti-apoptotic effect of STC-1 cells.  相似文献   

17.
GPR40 was formerly an orphan G protein-coupled receptor whose endogenous ligands have recently been identified as free fatty acids (FFAs). The receptor, now named FFA receptor 1, has been implicated in the pathophysiology of type 2 diabetes and is a drug target because of its role in FFA-mediated enhancement of glucose-stimulated insulin release. Guided by molecular modeling, we investigated the molecular determinants contributing to binding of linoleic acid, a C18 polyunsaturated FFA, and GW9508, a synthetic small molecule agonist. Twelve residues within the putative GPR40-binding pocket including hydrophilic/positively charged, aromatic, and hydrophobic residues were identified and were subjected to site-directed mutagenesis. Our results suggest that linoleic acid and GW9508 are anchored on their carboxylate groups by Arg(183), Asn(244), and Arg(258). Moreover, His(86), Tyr(91), and His(137) may contribute to aromatic and/or hydrophobic interactions with GW9508 that are not present, or relatively weak, with linoleic acid. The anchor residues, as well as the residues Tyr(12), Tyr(91), His(137), and Leu(186), appear to be important for receptor activation also. Interestingly, His(137) and particularly His(86) may interact with GW9508 in a manner dependent on its protonation status. The greater number of putative interactions between GPR40 and GW9508 compared with linoleic acid may explain the higher potency of GW9508.  相似文献   

18.
19.
The mechanisms linking fat intake to bone loss remain unclear. By demonstrating the expression of the free fatty acid receptor G-coupled protein receptor 40 (GPR40) in bone cells, we hypothesized that this receptor may play a role in mediating the effects of fatty acids on bone remodeling. Using micro-CT analysis, we showed that GPR40−/− mice exhibit osteoporotic features suggesting a positive role of GPR40 on bone density. In primary cultures of bone marrow, we showed that GW9508, a GRP40 agonist, abolished bone-resorbing cell differentiation. This alteration of the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation occurred via the inhibition of the nuclear factor κB (NF-κB) signaling pathway as demonstrated by decrease in gene reporter activity, inhibitor of κB kinase (IKKα/β) activation, inhibitor of κB (IkBα) phosphorylation, and nuclear factor of activated T cells 1 (NFATc1) expression. The GPR40-dependent effect of GW9508 was confirmed using shRNA interference in osteoclast precursors and GPR40−/− primary cell cultures. In addition, in vivo administration of GW9508 counteracted ovariectomy-induced bone loss in wild-type but not GPR40−/− mice, enlightening the obligatory role of the GPR40 receptor. Then, in a context of growing prevalence of metabolic and age-related bone disorders, our results demonstrate for the first time in translational approaches that GPR40 is a relevant target for the design of new nutritional and therapeutic strategies to counter bone complications.  相似文献   

20.
The G-protein-coupled receptor 40 (GPR40) is an attractive molecular target for the treatment of type 2 diabetes mellitus. Previously, based on the natural oleic acid substrate, an exogenous ligand for this receptor, named AV1, was synthesized. In this context, here we validated the activity of AV1 as a full agonist, while the corresponding catechol analogue, named AV2, was investigated for the first time. The ligand-protein interaction between this new molecule and the receptor was highlighted in the lower portion of the GPR40 groove that generally accommodates DC260126. The functional assays performed have demonstrated that AV2 is a suitable GPR40 partial agonist, showing a therapeutic potential and representing a useful tool in the management of type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号