共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Evaluation of the use of malic acid decarboxylase‐deficient starter culture in NaCl‐free cucumber fermentations to reduce bloater incidence 下载免费PDF全文
Y. Zhai I.M. Pérez‐Díaz J.T. Diaz R.L. Lombardi L.E. Connelly 《Journal of applied microbiology》2018,124(1):197-208
Aims
Accumulation of carbon dioxide (CO2) in cucumber fermentations is known to cause hollow cavities inside whole fruits or bloaters, conducive to economic losses for the pickling industry. This study focused on evaluating the use of a malic acid decarboxylase (MDC)‐deficient starter culture to minimize CO2 production and the resulting bloater index in sodium chloride‐free cucumber fermentations brined with CaCl2.Methods and Results
Attempts to isolate autochthonous MDC‐deficient starter cultures from commercial fermentations, using the MD medium for screening, were unsuccessful. The utilization of allochthonous MDC‐deficient starter cultures resulted in incomplete utilization of sugars and delayed fermentations. Acidified fermentations were considered, to suppress the indigenous microbiota and favour proliferation of the allochthonous MDC‐deficient Lactobacillus plantarum starter cultures. Inoculation of acidified fermentations with L. plantarum alone or in combination with Lactobacillus brevis minimally improved the conversion of sugars. However, inoculation of the pure allochthonous MDC‐deficient starter culture to 107 CFU per ml in acidified fermentations resulted in a reduced bloater index as compared to wild fermentations and those inoculated with the mixed starter culture.Conclusions
Although use of an allochthonous MDC‐deficient starter culture reduces bloater index in acidified cucumber fermentations brined with CaCl2, an incomplete conversion of sugars is observed.Significance and Impact of the Study
Economical losses due to the incidence of bloaters in commercial cucumber fermentations brined with CaCl2 may be reduced utilizing a starter culture to high cell density. 相似文献7.
A. Asadi V. Lohrasbi M. Abdi S. Mirkalantari M. Esghaei M. Kashanian M. Oshaghi M. Talebi 《Letters in applied microbiology》2022,74(5):752-764
During the last decade, probiotic research has progressed considerably and significant advances have been made in the selection and characterization of specific probiotic strains. The most studied probiotics belong to the genus Lactobacillus. In this study, 80 Lactobacillus spp. isolated from healthy women tolerated low pH and were able to grow in the presence of bile salts. RAPD PCR technique resulted in the identification of 38 different types. These isolates were then evaluated based on adhesion capacity, antibiotic susceptibility and tolerance in simulated gastrointestinal tract. Species-specific PCR and detection of bacteriocin-related genes were also surveyed. Among the isolates, five strains—Lacticaseibacillus rhamnosus NO21, Lacticaseibacillus casei NO1, Lactiplantibacillus plantarum NO4, Lactobacillus acidophilus NO7 and Lactobacillus gasseri NO38—presented acceptable antibiotic susceptibility pattern. Further analysis showed antimicrobial activity of Lacticaseibacillus culture against various bacterial pathogens and real-time PCR showed all five strains were able to prevent the colonization of bacterial pathogens. All five selected strains produced organic acids, hydrogen peroxide and were resistant to the spermicide. In addition, they lacked haemolytic activity with the ability of hydrophobicity, auto-aggregation and co-aggregation with pathogens. These results suggest that the vaginal microbiome could be a good source for the isolation of probiotics and the strains of this study may be considered as good probiotic candidates. 相似文献
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
D.‐K. Kang 《Journal of applied microbiology》2017,122(3):554-567
The use of lactobacilli as probiotics in swine has been gaining attention due to their ability to improve growth performance and carcass quality, prevent gastrointestinal infection and most importantly, their ‘generally recognized as safe’ status. Previous studies support the potential of lactobacilli to regulate host immune systems, enhance gut metabolic capacities and maintain balance in the gut microbiota. Research on swine gut microbiota has revealed complex gut microbial community structure and showed the importance of Lactobacillus to the host's health. However, the species‐ and strain‐specific characteristics of lactobacilli that confer probiotic benefits are still not well understood. The diversity of probiotic traits in a complex gut ecosystem makes it challenging to infer the relationships between specific functions of Lactobacillus sp. and host health. In this review, we provide an overview of how lactobacilli play a pivotal role in the swine gut ecosystem and identify key characteristics that influence gut microbial community structure and the health of pigs. In addition, based on recent and ongoing meta‐omics and omics research on the gut microbiota of pigs, we suggest a workflow combining culture‐dependent and culture‐independent approaches for more effective selection of probiotic lactobacilli. 相似文献
18.
19.
Y. Belguesmia Y. Choiset H. Rabesona M. Baudy‐Floc'h G. Le Blay T. Haertlé J.‐M. Chobert 《Letters in applied microbiology》2013,56(4):237-244
The aim of this work was to study the antifungal properties of durancins isolated from Enterococcus durans A5‐11 and of their chemically synthesized fragments. Enterococcus durans A5‐11 is a lactic acid bacteria strain isolated from traditional Mongolian airag cheese. This strain inhibits the growth of several fungi including Fusarium culmorum, Penicillium roqueforti and Debaryomyces hansenii. It produces two bacteriocins: durancin A5‐11a and durancin A5‐11b, which have similar antimicrobial properties. The whole durancins A5‐11a and A5‐11b, as well as their N‐ and C‐terminal fragments were synthesized, and their antifungal properties were studied. C‐terminal fragments of both durancins showed stronger antifungal activities than other tested peptides. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l?1 of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra‐structure of the yeast cells. Chemically synthesized durancins and their synthetic fragments showed different antimicrobial properties from each other. N‐terminal peptides show activities against both bacterial and fungal strains tested. C‐terminal peptides have specific activities against tested fungal strain and do not show antibacterial activity. However, the C‐terminal fragment enhances the activity of the N‐terminal fragment in the whole bacteriocins against bacteria.