首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Squalene epoxidase enzymes catalyse the conversion of squalene into 2,3‐oxidosqualene, the precursor of cyclic triterpenoids. Here we report that the Arabidopsis drought hypersensitive/squalene epoxidase 1‐5 (dry2/sqe1‐5) mutant, identified by its extreme hypersensitivity to drought stress, has altered stomatal responses and root defects because of a point mutation in the SQUALENE EPOXIDASE 1 (SQE1) gene. GC‐MS analysis indicated that the dry2/sqe1‐5 mutant has altered sterol composition in roots but wild‐type sterol composition in shoots, indicating an essential role for SQE1 in root sterol biosynthesis. Importantly, the stomatal and root defects of the dry2/sqe1‐5 mutant are associated with altered production of reactive oxygen species. As RHD2 NADPH oxidase is de‐localized in dry2/sqe1‐5 root hairs, we propose that sterols play an essential role in the localization of NADPH oxidases required for regulation of reactive oxygen species, stomatal responses and drought tolerance.  相似文献   

2.
3.
4.
Large‐scale monitoring schemes are essential in assessing global mammalian biodiversity, and in this framework, leeches have recently been promoted as an indirect source of DNA from terrestrial mammal species. Carrion feeding flies are ubiquitous and can be expected to feed on many vertebrate carcasses. Hence, we tested whether fly‐derived DNA analysis may also serve as a novel tool for mammalian diversity surveys. We screened DNA extracted from 201 carrion flies collected in tropical habitats of Côte d'Ivoire and Madagascar for mammal DNA using multiple PCR systems and retrieved DNA sequences from a diverse set of species (22 in Côte d'Ivoire, four in Madagascar) exploiting distinct forest strata and displaying a broad range of body sizes. Deep sequencing of amplicons generated from pools of flies performed equally well as individual sequencing approaches. We conclude that the analysis of fly‐derived DNA can be implemented in a very rapid and cost‐effective manner and will give a relatively unbiased picture of local mammal diversity. Carrion flies therefore represent an extraordinary and thus far unexploited resource of mammal DNA, which will probably prove useful for future inventories of wild mammal communities.  相似文献   

5.
6.
The inherent difficulty of expressing clostridial AT-rich genes in a heterologous host has limited their biotechnological application. We previously reported a plasmid for high-level expression of clostridial genes in Clostridium perfringens (Takamizawa et al., Protein Expr Purif 36:70–75, 2004). In this study, we examined the extracellular proteases of C. perfringens strain 13. Zymographic analysis and caseinase assaying of a culture supernatant showed that it contained a protease activated by dithiothreitol and Ca2+, suggesting that clostripain-like protease (Clp) is the most likely candidate for the major extracellular protease. Disruption of the clp gene by homologous recombination markedly decreased the level of caseinase activity in the culture supernatant. Analysis by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the Clp mutant but not the wild type strain increased the levels of many polypeptides in the culture supernatant after the late exponential growth phase. Such polypeptides included both cytoplasmic and secretory proteins, suggesting proteins secreted or released into the medium were degraded by Clp. To assess the effects of Clp on the productivity and stability of recombinant proteins, 74-kDa NanI sialidase was expressed in the two strains. The mutant strain produced a higher level of NanI activity than the wild type strain. Furthermore, under the conditions where Clp was activated, NanI was degraded easily in the latter culture but not in the former one. These results indicate that the Clp mutant could serve as a useful strain for efficiently expressing and preparing protease-free clostridial proteins.  相似文献   

7.
A newly isolated osmo-, salt-, and alkalitolerant Yarrowia lipolytica yeast strain is distinguished from other yeast species by its capacity to grow vigorously at alkaline pH values (9.7), which makes it a promising model organism for studying Na+-dependent phosphate transport systems in yeasts. Phosphate uptake by Y. lipolytica cells grown at pH 9.7 was mediated by several kinetically discrete Na+-dependent systems specifically activated by Na+. One of these, a low-affinity transporter, operated at high concentrations of extracellular phosphate. The other two, high-affinity systems, maximally active in phosphate-starved cells, were repressed or derepressed depending on the prevailing extracellular phosphate concentration and pH value. The contribution of Na+/Pi-cotransport systems to the total cellular phosphate uptake progressively increased with increasing pH, reaching its maximum at pH 9.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1607–1615.Original Russian Text Copyright © 2004 by Zvyagilskaya, Persson.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号