首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Two bacterial strains used for industrial production of 2‐keto‐L‐gulonic acid (2‐KLG), Ketogulonigenium vulgare 2 and Bacillus thuringiensis 1514, were loaded onto the spacecraft Shenzhou VII and exposed to space conditions for 68 h in an attempt to increase their fermentation productivities of 2‐KLG. An optimal combination of mutants B. thuringiensis 320 and K. vulgare 2194 (KB2194‐320) was identified by systematically screening the pH and 2‐KLG production of 16 000 colonies. Compared with the coculture of parent strains, the conversion rate of L‐sorbose to 2‐KLG by KB2194‐320 in shake flask fermentation was increased significantly from 82·7% to 95·0%. Furthermore, a conversion rate of 94·5% and 2‐KLG productivity of 1·88 g l?1 h?1 were achieved with KB2194‐320 in industrial‐scale fermentation (260 m3 fermentor). An observed increase in cell number of K2194 (increased by 47·8%) during the exponential phase and decrease in 2‐KLG reductase activity (decreased by 46·0%) were assumed to explain the enhanced 2‐KLG production. The results suggested that the mutants KB2194‐320 could be ideal substitutes for the currently employed strains in the 2‐KLG fermentation process and demonstrated the feasibility of using spaceflight to breed high‐yielding 2‐KLG‐producing strains for vitamin C production.

Significance and Impact of the Study

KB2194‐320, a combination of two bacterial strains bred by spaceflight mutation, exhibited significantly improved 2‐KLG productivity and hence could potentially increase the efficiency and reduce the cost of vitamin C production by the two‐step fermentation process. In addition, a new pH indicator method was applied for rational screening of K2, which dramatically improved the efficiency of screening.  相似文献   

9.
10.
11.
12.
Various bacterial taxa have been identified both in association with animals and in the external environment, but the extent to which related bacteria from the two habitat types are ecologically and evolutionarily distinct is largely unknown. This study investigated the scale and pattern of genetic differentiation between bacteria of the family Acetobacteraceae isolated from the guts of Drosophila fruit flies, plant material and industrial fermentations. Genome‐scale analysis of the phylogenetic relationships and predicted functions was conducted on 44 Acetobacteraceae isolates, including newly sequenced genomes from 18 isolates from wild and laboratory Drosophila. Isolates from the external environment and Drosophila could not be assigned to distinct phylogenetic groups, nor are their genomes enriched for any different sets of genes or category of predicted gene functions. In contrast, analysis of bacteria from laboratory Drosophila showed they were genetically distinct in their universal capacity to degrade uric acid (a major nitrogenous waste product of Drosophila) and absence of flagellar motility, while these traits vary among wild Drosophila isolates. Analysis of the competitive fitness of Acetobacter discordant for these traits revealed a significant fitness deficit for bacteria that cannot degrade uric acid in culture with Drosophila. We propose that, for wild populations, frequent cycling of Acetobacter between Drosophila and the external environment prevents genetic differentiation by maintaining selection for traits adaptive in both the gut and external habitats. However, laboratory isolates bear the signs of adaptation to persistent association with the Drosophila host under tightly defined environmental conditions.  相似文献   

13.
14.
Acacia‐ant mutualists in the genus Pseudomyrmex nest obligately in acacia plants and, as we show through stable isotope analysis, feed at a remarkably low trophic level. Insects with diets such as these sometimes depend on bacterial symbionts for nutritional enrichment. We, therefore, examine the bacterial communities associated with acacia‐ants in order to determine whether they host bacterial partners likely to contribute to their nutrition. Despite large differences in trophic position, acacia‐ants and related species with generalized diets do not host distinct bacterial taxa. However, we find that a small number of previously undescribed bacterial taxa do differ in relative abundance between acacia‐ants and generalists, including several Acetobacteraceae and Nocardiaceae lineages related to common insect associates. Comparisons with an herbivorous generalist, a parasite that feeds on acacias and a mutualistic species with a generalized diet show that trophic level is likely responsible for these small differences in bacterial community structure. While we did not experimentally test for a nutritional benefit to hosts of these bacterial lineages, metagenomic analysis reveals a Bartonella relative with an intact nitrogen‐recycling pathway widespread across Pseudomyrmex mutualists and generalists. This taxon may be contributing to nitrogen enrichment of its ant hosts through urease activity and, concordant with an obligately host‐associated lifestyle, appears to be experiencing genomewide relaxed selection. The lack of distinctiveness in bacterial communities across trophic level in this group of ants shows a remarkable ability to adjust to varied diets, possibly with assistance from these diverse ant‐specific bacterial lineages.  相似文献   

15.
Localization of mRNA and small RNAs (sRNAs) is important for understanding their function. Fluorescent in situ hybridization (FISH) has been used extensively in animal systems to study the localization and expression of sRNAs. However, current methods for fluorescent in situ detection of sRNA in plant tissues are less developed. Here we report a protocol (sRNA‐FISH) for efficient fluorescent detection of sRNAs in plants. This protocol is suitable for application in diverse plant species and tissue types. The use of locked nucleic acid probes and antibodies conjugated with different fluorophores allows the detection of two sRNAs in the same sample. Using this method, we have successfully detected the co‐localization of miR2275 and a 24‐nucleotide phased small interfering RNA in maize anther tapetal and archesporial cells. We describe how to overcome the common problem of the wide range of autofluorescence in embedded plant tissue using linear spectral unmixing on a laser scanning confocal microscope. For highly autofluorescent samples, we show that multi‐photon fluorescence excitation microscopy can be used to separate the target sRNA‐FISH signal from background autofluorescence. In contrast to colorimetric in situ hybridization, sRNA‐FISH signals can be imaged using super‐resolution microscopy to examine the subcellular localization of sRNAs. We detected maize miR2275 by super‐resolution structured illumination microscopy and direct stochastic optical reconstruction microscopy. In this study, we describe how we overcame the challenges of adapting FISH for imaging in plant tissue and provide a step‐by‐step sRNA‐FISH protocol for studying sRNAs at the cellular and even subcellular level.  相似文献   

16.
17.
Precise genome engineering via homologous recombination (HR)‐mediated gene targeting (GT) has become an essential tool in molecular breeding as well as in basic plant science. As HR‐mediated GT is an extremely rare event, positive–negative selection has been used extensively in flowering plants to isolate cells in which GT has occurred. In order to utilize GT as a methodology for precision mutagenesis, the positive selectable marker gene should be completely eliminated from the GT locus. Here, we introduce targeted point mutations conferring resistance to herbicide into the rice acetolactate synthase (ALS) gene via GT with subsequent marker excision by piggyBac transposition. Almost all regenerated plants expressing piggyBac transposase contained exclusively targeted point mutations without concomitant re‐integration of the transposon, resulting in these progeny showing a herbicide bispyribac sodium (BS)‐tolerant phenotype. This approach was also applied successfully to the editing of a microRNA targeting site in the rice cleistogamy 1 gene. Therefore, our approach provides a general strategy for the targeted modification of endogenous genes in plants.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号