首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 6 毫秒
1.
2.
3.
4.
Municipalities are expected to provide solid waste management, which is funded by tax revenue or/and waste treatment fees. In many low‐ and middle‐income countries, municipalities struggle to provide an adequate level of service, and in these places, the informal sector plays a major role in the collection and treatment of solid waste. In contrast to the plastic and metal fraction, the organic fraction is not managed by the informal sector, primarily because it has low or no financial value and treatment would cost more than the possible revenue. If the organic fraction could be converted to valuable products, the treatment could bear its own cost and this could act as an incentive to collect and treat this fraction. In this study, the potential product value generated through four treatment strategies treating food waste and faeces was compared in a Swedish context: (i) thermophilic composting; (ii) black soldier fly treatment (BSF treatment); (iii) anaerobic digestion (AD); and (iv) BSF treatment followed by AD (BSF + AD). In order to assess the AD strategies, the biomethane potentials of the substrates were assessed. Food waste had the highest biomethane potential, while BSF‐treated faeces had the lowest (417 and 188 NmL g VS?1, respectively). Thermophilic composting yielded the lowest value product (organic fertilizer; 26 € t?1 treated food waste) and BSF treatment + AD the highest total value of products (animal feed, vehicle gas and organic fertilizer; 215 € t?1 treated food waste). The treatment costs were not taken into account here; the total value gives an indication of the cost margin for the different strategies studied. In places with an existing AD plant, BSF treatment + AD strategy is the most economically viable. In places where no such plant exists, BSF treatment is likely to be the most economically favourable treatment.  相似文献   

5.
Biogenic volatile organic compounds (BVOC) emissions from bioenergy crops may differ from those of conventional crops. We compared emission rates of isoprene and a number of monoterpenes from the lignocellulosic bioenergy crops short‐rotation coppice (SRC) willow and Miscanthus, with the conventional crops wheat and oilseed rape. BVOC emission rates were measured via dynamic vegetation enclosure and GC‐MS analysis approximately monthly between April 2010 and August 2012 at a location in England and from SRC willow at two locations in Scotland. The largest BVOC emission rates were measured from willow in England and varied between years. Isoprene emission rates varied between μg g?1 h?1. Of the monoterpenes detected from willow, α‐pinene emission rates were highest (μg g?1 h?1), followed by μg g?1 h?1 for δ‐3‐carene, μg g?1 h?1 for β‐pinene and μg g?1 h?1 for limonene. BVOC emission rates measured in Scotland were much lower. Low emission rates of isoprene and α‐pinene were measured from Miscanthus in 2010 (μg g?1 h?1 and μg g?1 h?1, respectively) but were not detected in subsequent years. Emission rates from wheat of isoprene were negligible but relatively high for monoterpenes (μg g?1 h?1 and μg g?1 h?1 for α‐pinene and limonene, respectively). No significant emission rates of BVOCs were measured from oilseed rape. The measured emission rates followed a clear seasonal trend. Crude extrapolations based solely on data gathered here indicate that isoprene emissions from willow could correspond to 0.004–0.03% (UK) and 0.76–5.5% (Europe) of current global isoprene if 50% of all land potentially available for bioenergy crops is planted with willow.  相似文献   

6.
7.
The factors explaining host‐associated differentiation (HAD) have not yet been fully characterized, especially in agricultural systems. It is thought that certain characteristics within a system may increase the probability for HAD to occur. These characteristics include relatively long‐standing evolutionary relationships between insects and their host plants, endophagy, and allochrony in host‐plant phenologies. We assessed the status of these characteristics as well as the presence of HAD in the cranberry fruitworm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae), a pest associated with blueberry and cranberry in eastern North America. We reveal the occurrence of two distinct populations of A. vaccinii that are allochronically isolated by the phenological stage of their respective host plants (cranberries or blueberries). Laboratory‐reared A. vaccinii adults collected from blueberries emerge at least 1 week earlier than adults from cranberries and the antennal sensitivity of adults to host‐plant volatiles differs between A. vaccinii collected from blueberry and cranberry. Despite finding characteristics indicative of HAD, we did not detect a genetic signature of HAD in A. vaccinii. These findings suggest that HAD may occur through behavioral and phenological mechanisms before there is sufficient genetic variation to be detected.  相似文献   

8.
This article identifies marginal land technically available for the production of energy crops in China, compares three models of yield prediction for Miscanthus × giganteus, Panicum virgatum L. (switchgrass), and Jatropha, and estimates their spatially specific yields and technical potential for 2017. Geographic Information System (GIS) analysis of land use maps estimated that 185 Mha of marginal land was technically available for energy crops in China without using areas currently used for food production. Modeled yields were projected for Miscanthus × giganteus, a GIS‐based Environmental Policy Integrated Climate model for switchgrass and Global Agro‐Ecological Zone model for Jatropha. GIS analysis and MiscanFor estimated more than 120 Mha marginal land was technically available for Miscanthus with a total potential of 1,761 dry weight metric million tonne (DW Mt)/year. A total of 284 DW Mt/year of switchgrass could be obtained from 30 Mha marginal land, with an average yield of 9.5 DW t ha?1 year?1. More than 35 Mha marginal land was technically available for Jatropha, delivering 9.7 Mt/year of Jatropha seed. The total technical potential from available marginal land was calculated as 31.7 EJ/year for Miscanthus, 5.1 EJ/year for switchgrass, and 0.13 EJ/year for Jatropha. A total technical bioenergy potential of 34.4 EJ/year was calculated by identifying best suited crop for each 1 km2 grid cell based on the highest energy value among the three crops. The results indicate that the technical potential per hectare of Jatropha is unable to compete with that of the other two crops in each grid cell. This modeling study provides planners with spatial overviews that demonstrate the potential of these crops and where biomass production could be potentially distributed in China which needs field trials to test model assumptions and build experience necessary to translate into practicality.  相似文献   

9.
To increase the understanding of poplar and willow perennial woody crops and facilitate their deployment for the production of biofuels, bioproducts, and bioenergy, there is a need for broadscale yield maps. For national analysis of woody and herbaceous crops production potential, biomass feedstock yield maps should be developed using a common framework. This study developed willow and poplar potential yield maps by combining data from a network of willow and poplar field trials and the modeling power of PRISM‐ELM. Yields of the top three willow cultivars across 17 sites ranged from 3.60 to 14.6 Mg ha?1 yr?1 dry weight, while the yields from 17 poplar trials ranged from 7.5 to 15.2 Mg ha?1 yr?1. Relationships between the environmental suitability estimates from the PRISM‐ELM model and results from field trials had an R2 of 0.60 for poplar and 0.81 for willow. The resulting potential yield maps reflected the range of poplar and willow yields that have been reported in the literature. Poplar covered a larger geographic range than willow, which likely reflects the poplar breeding efforts that have occurred for many more decades using genotypes from a broader range of environments than willow. While the field trial data sets used to develop these models represent the most complete information at the time, there is a need to expand and improve the model by monitoring trials over multiple cutting cycles and across a broader range of environmental gradients. Despite some limitations, the results of these models represent a dramatic improvement in projections of potential yield of poplar and willow crops across the United States.  相似文献   

10.
Spatially explicit farm‐gate production costs and the economic potential of three types of energy crops grown on available marginal land in China for 2017 and 2040 were investigated using a spatial accounting method and construction of cost–supply curves. The average farm‐gate cost from all available marginal land was calculated as 32.9 CNY/GJ for Miscanthus Mode, 27.5 CNY/GJ for Switchgrass Mode, 32.4 CNY/GJ for Miscanthus & Switchgrass Mode, and 909 CNY/GJ for Jatropha Mode in 2017. The costs of Miscanthus and switchgrass were predicted to decrease by approximately 11%‐15%, whereas the cost of Jatropha was expected to increase by 5% in 2040. The cost of Jatropha varies significantly from 193 to 9,477 CNY/GJ across regions because of the huge differences in yield across regions. The economic potential of the marginal land was calculated as 28.7 EJ/year at a cost of less than 25 CNY/GJ for Miscanthus Mode, 4.0 EJ/year at a cost of less than 30 CNY/GJ for Switchgrass Mode, 29.6 EJ/year at a cost of less than 25 CNY/GJ for Miscanthus & Switchgrass Mode, and 0.1 EJ/year at a cost of less than 500 CNY/GJ for Jatropha Mode in 2017. It is not feasible to develop Jatropha production on marginal land based on existing technologies, given its high production costs. Therefore, the Miscanthus & Switchgrass Mode is the most economical way, because it achieves the highest economic potential compared with other modes. The sensitivity analysis showed that the farm‐gate costs of Miscanthus and switchgrass are most sensitive to uncertainties associated with yield reduction and harvesting costs, while, for Jatropha, the unpredictable yield has the greatest impact on its farm‐gate cost. This study can help policymakers and industrial stakeholders make strategic and tactical bioenergy development plans in China (exchange rate in 2017: 1€ = 7.63¥; all the joules in this paper are higher heat value).  相似文献   

11.
Lycium chinenseMill ., popularly known as boxthorn, is a plant that is traditionally used for treating night sweat, cough, inflammation and diabetes mellitus. However, the leaves have received little or no attention despite their potentials as a potent therapeutic agent. This study was aimed at investigating the hypoglycemic and hypolipidemic effects of the polyphenols‐rich ethyl acetate fraction from the leaves of Lycium chinenseMill . on streptozotocin‐nicotinamide induced diabetic rats. The ethyl acetate fraction (LFE) was selected and orally gavaged at 100, 200, and 400 mg/kg dose to streptozotocin (STZ)‐nicotinamide induced diabetic rats. The rats’ body weight, fasting blood glucose (FBG), lipid profile and oxidative stress markers were evaluated after the treatment period. Treatment with LFE resulted in a significant decrease in the FBG level, altered lipid profiles, and reduced the activities of the enzymes alkaline phosphatase (ALP), aspartate transaminase (AST), alanine transaminase (ALT) in the treated diabetic rats. Furthermore, LFE significantly elevated the antioxidant status (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH‐Px) activities) and reducing malondialdehyde (MDA) levels in the treated rats. The present study has revealed that L. chinenseMill . possess anti‐hyperglycemic and anti‐hyperlipidemic properties which is mediated through modulation of oxidative stress and polyphenolics might be responsible for the action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号