首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
  • Oxalic acid is widely distributed in biological systems and known to play functional roles in plants. The gene AAE3 was recently identified to encode an oxalyl‐CoA synthetase (OCS) in Arabidopsis that catalyses the conversion of oxalate and CoA into oxalyl‐CoA. It will be particularly important to characterise the homologous gene in rice since rice is not only a monocotyledonous model plant, but also a staple food crop.
  • Various enzymatic and biological methods have been used to characterise the homologous gene.
  • We first defined that AAE3 in the rice genome (OsAAE3) also encodes an OCS enzyme. Its Km for oxalate is 1.73 ± 0.12 mm , and Vm is 6824.9 ± 410.29 U·min?1·mg protein?1. Chemical modification and site‐directed mutagenesis analyses identified thiols as the active site residues for rice OCS catalysis, suggesting that the enzyme might be regulated by redox state. Subcellular localisation assay showed that the enzyme is located in the cytosol and predominantly distributed in leaf epidermal cells. As expected, oxalate levels increased when OCS was suppressed in RNAi transgenic plants. More interestingly, OCS‐suppressed plants were more susceptible to bacterial blight but more resistant to Al toxicity.
  • The results demonstrate that the OsAAE3‐encoded protein also acts as an OCS in rice, and may play different roles in coping with stresses. These molecular, enzymatic and functional data provide first‐hand information to further clarify the function and mechanism of OCS in rice plants.
  相似文献   

7.
Various bacterial taxa have been identified both in association with animals and in the external environment, but the extent to which related bacteria from the two habitat types are ecologically and evolutionarily distinct is largely unknown. This study investigated the scale and pattern of genetic differentiation between bacteria of the family Acetobacteraceae isolated from the guts of Drosophila fruit flies, plant material and industrial fermentations. Genome‐scale analysis of the phylogenetic relationships and predicted functions was conducted on 44 Acetobacteraceae isolates, including newly sequenced genomes from 18 isolates from wild and laboratory Drosophila. Isolates from the external environment and Drosophila could not be assigned to distinct phylogenetic groups, nor are their genomes enriched for any different sets of genes or category of predicted gene functions. In contrast, analysis of bacteria from laboratory Drosophila showed they were genetically distinct in their universal capacity to degrade uric acid (a major nitrogenous waste product of Drosophila) and absence of flagellar motility, while these traits vary among wild Drosophila isolates. Analysis of the competitive fitness of Acetobacter discordant for these traits revealed a significant fitness deficit for bacteria that cannot degrade uric acid in culture with Drosophila. We propose that, for wild populations, frequent cycling of Acetobacter between Drosophila and the external environment prevents genetic differentiation by maintaining selection for traits adaptive in both the gut and external habitats. However, laboratory isolates bear the signs of adaptation to persistent association with the Drosophila host under tightly defined environmental conditions.  相似文献   

8.
9.
Protein cysteine thiols are post‐translationally modified under oxidative stress conditions. Illuminated chloroplasts are one of the important sources of hydrogen peroxide (H2O2) and are highly sensitive to environmental stimuli, yet a comprehensive view of the oxidation‐sensitive chloroplast proteome is still missing. By targeting the sulfenic acid YAP1C‐trapping technology to the plastids of light‐grown Arabidopsis cells, we identified 132 putatively sulfenylated plastid proteins upon H2O2 pulse treatment. Almost half of the sulfenylated proteins are enzymes of the amino acid metabolism. Using metabolomics, we observed a reversible decrease in the levels of the amino acids Ala, Asn, Cys, Gln, Glu, His, Ile, Leu, Lys, Phe, Ser, Thr and Val after H2O2 treatment, which is in line with an anticipated decrease in the levels of the glycolysis and tricarboxylic acid metabolites. Through the identification of an organelle‐tailored proteome, we demonstrated that the subcellular targeting of the YAP1C probe enables us to study in vivo cysteine sulfenylation at the organellar level. All in all, the identification of these oxidation events in plastids revealed that several enzymes of the amino acid metabolism rapidly undergo cysteine oxidation upon oxidative stress.  相似文献   

10.
11.
12.
Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end‐use applications. However, the hydrogenation process leads to the formation of trans‐fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl‐ACP thioesterase into soybean and the subsequent stacking with an event that is dual‐silenced in palmitoyl‐ACP thioesterase and ?12 fatty acid desaturase expression in a seed‐specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl‐ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl‐ACP thioesterase and ?12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%–19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%–40%, while the stearic level remained elevated.  相似文献   

13.
14.
During gas chromatography (GC) analysis of fatty acid (FA) composition of the dinoflagellate Gymnodinium kowalevskii, we found unex‐pectedly low and irreproducible content of all‐cis‐3,6,9,12,15‐octadecapentaenoic acid (18:5n‐3), which is an important chemotaxonomic marker of several classes of microalgae. We compared chromatographic behavior of 18:5n‐3 methyl ester and other GC derivatives obtained using different conventional methods of derivatization. The use of methods based on saponification or base‐catalyzed transesterification resulted in a mixture of double‐bond positional isomers of 18:5. On a SUPELCOWAX 10 column, the equivalent chain length (ECL) value for authentic 18:5n‐3 methyl ester was 20.22, whereas the main component after base‐catalyzed methylation had ECL 20.88. Attempts to prepare N‐acyl pyrrolidides or 4,4‐dimethyloxazoline (DMOX) derivatives of 18:5n‐3 also gave inadequate results. These derivatives also showed a main peak corresponding to isomerized 18:5. Mass spectra for both DMOX and pyrrolidide derivatives of this compound showed the base peak at m/z 139, probably corresponding to 2,6,9,12,15‐18:5 acid. Of all methods tested for methylation, only derivatization with 5% HCl or 1% sulphuric acid in methanol gave satisfactory results. Therefore, GC or GC‐mass spectrometry analyses of algal lipids containing 18:5n‐3 may be inaccurate when base‐catalyzed methods of FA derivatization are applied. The best and simplest way to avoid incorrect GC results is to use standard acid‐catalyzed methylation.  相似文献   

15.
16.
Spider mites (Tetranychidae sp.) are widely occurring arthropod pests on cultivated plants. Feeding by the two‐spotted spider mite T. urticae, a generalist herbivore, induces a defense response in plants that mainly depends on the phytohormones jasmonic acid and salicylic acid (SA). On tomato (Solanum lycopersicum), however, certain genotypes of T. urticae and the specialist species T. evansi were found to suppress these defenses. This phenomenon occurs downstream of phytohormone accumulation via an unknown mechanism. We investigated if spider mites possess effector‐like proteins in their saliva that can account for this defense suppression. First we performed an in silico prediction of the T. urticae and the T. evansi secretomes, and subsequently generated a short list of candidate effectors based on additional selection criteria such as life stage‐specific expression and salivary gland expression via whole mount in situ hybridization. We picked the top five most promising protein families and then expressed representatives in Nicotiana benthamiana using Agrobacterium tumefaciens transient expression assays to assess their effect on plant defenses. Four proteins from two families suppressed defenses downstream of the phytohormone SA. Furthermore, T. urticae performance on N. benthamiana improved in response to transient expression of three of these proteins and this improvement was similar to that of mites feeding on the tomato SA accumulation mutant nahG. Our results suggest that both generalist and specialist plant‐eating mite species are sensitive to SA defenses but secrete proteins via their saliva to reduce the negative effects of these defenses.  相似文献   

17.
  • Brachypodium distachyon (L.) has recently emerged as a model for temperate grasses for investigating the molecular basis of plant–pathogen interactions. Phytoalexin deficient 4 (PAD4) plays a regulatory role in mediating expression of genes involved in plant defence.
  • In this research, we generated transgenic B. distachyon plants constitutively overexpressing AtPAD4. Two transgenic B. distachyon lines were verified using PCR and GUS phenotype.
  • Constitutive expression of AtPAD4 in B. distachyon enhanced resistance to Puccinia brachypodii. Pbrachypodii generated less urediniospores on transgenic than on wild‐type plants. AtPAD4 overexpression enhanced salicylic acid (SA) levels in B. distachyon‐infected tissues. qRT‐PCR showed that expression of pathogenesis‐related 1 (PR1) and other defence‐related genes were up‐regulated in transformed B. distachyon following infection with P. brachypodii.
  • Our results indicate that AtPAD4 overexpression in B. distachyon plants led to SA accumulation and induced PR gene expression that reduced the rate of colonisation by P. brachypodii.
  相似文献   

18.
Aging is a risk factor for Alzheimer's disease (AD) and is associated with cognitive decline. However, underlying molecular mechanisms of brain aging are not clear. Recent studies suggest epigenetic influences on gene expression in AD, as DNA methylation levels influence protein and mRNA expression in postmortem AD brain. We hypothesized that some of these changes occur with normal aging. To test this hypothesis, we measured markers of the arachidonic acid (AA) cascade, neuroinflammation, pro‐ and anti‐apoptosis factors, and gene specific epigenetic modifications in postmortem frontal cortex from nine middle‐aged [41 ± 1 (SEM) years] and 10 aged subjects (70 ± 3 years). The aged compared with middle‐aged brain showed elevated levels of neuroinflammatory and AA cascade markers, altered pro and anti‐apoptosis factors and loss of synaptophysin. Some of these changes correlated with promoter hypermethylation of brain derived neurotrophic factor (BDNF), cyclic AMP responsive element binding protein (CREB), and synaptophysin and hypomethylation of BCL‐2 associated X protein (BAX). These molecular alterations in aging are different from or more subtle than changes associated with AD pathology. The degree to which they are related to changes in cognition or behavior during normal aging remains to be evaluated.  相似文献   

19.
Symbiotic hemoglobins provide O2 to N2‐fixing bacteria within legume nodules, but the functions of non‐symbiotic hemoglobins or phytoglobins (Glbs) are much less defined. Immunolabeling combined with confocal microscopy of the Glbs tagged at the C‐terminus with green fluorescent protein was used to determine their subcellular localizations in Arabidopsis and Lotus japonicus. Recombinant proteins were used to examine nitric oxide (NO) scavenging in vitro and transgenic plants to show S‐nitrosylation and other in vivo interactions with NO and abscisic acid (ABA) responses. We found that Glbs occur in the nuclei, chloroplasts and amyloplasts of both model plants, and also in the cytoplasm of Arabidopsis cells. The proteins show similar NO dioxygenase activities in vitro, are nitrosylated in Cys residues in vivo, and scavenge NO in the stomatal cells. The Cys/Ser mutation does not affect NO dioxygenase activity, and S‐nitrosylation does not significantly consume NO. We demonstrate an interaction between Glbs and ABA on several grounds: Glb1 and Glb2 scavenge NO produced in stomatal guard cells following ABA supply; plants overexpressing Glb1 show higher constitutive expression of the ABA responsive genes Responsive to ABA (RAB18), Responsive to Dehydration (RD29A) and Highly ABA‐Induced 2 (HAI2), and are more tolerant to dehydration; and ABA strongly upregulates class 1 Glbs. We conclude that Glbs modulate NO and interact with ABA in crucial physiological processes such as the plant's response to dessication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号