首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated.

Methods

Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy.

Results

Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P < 0.01), 14% increase in ROS production (P < 0.01), and 81% reduction in mitochondrial membrane potential (P < 0.01), compared with untreated cells. Lower concentration of ketamine (100 μM) decreased the ATP level (22%, P < 0.01) and increased the NADH/NAD+ ratio (46%, P < 0.05) without caspase activation. Transmission electron microscopy showed enhanced mitochondrial fission and autophagocytosis at the 100 μM ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation.

Conclusions

We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons.  相似文献   

2.
We engineered a strain of the bacterium Caulobacter crescentus to fluoresce in the presence of micromolar levels of uranium at ambient temperatures when it is exposed to a hand-held UV lamp. Previous microarray experiments revealed that several Caulobacter genes are significantly upregulated in response to uranium but not in response to other heavy metals. We designated one of these genes urcA (for uranium response in caulobacter). We constructed a reporter that utilizes the urcA promoter to produce a UV-excitable green fluorescent protein in the presence of the uranyl cation, a soluble form of uranium. This reporter is specific for uranium and has little cross specificity for nitrate (<400 μM), lead (<150 μM), cadmium (<48 μM), or chromium (<41.6 μM). The uranium reporter construct was effective for discriminating contaminated groundwater samples (4.2 μM uranium) from uncontaminated groundwater samples (<0.1 μM uranium) collected at the Oak Ridge Field Research Center. In contrast to other uranium detection methodologies, the Caulobacter reporter strain can provide on-demand usability in the field; it requires minimal sample processing and no equipment other than a hand-held UV lamp, and it may be sprayed directly on soil, groundwater, or industrial surfaces.  相似文献   

3.
Mitochondrial Ca2+ uptake exerts dual effects on mitochondria. Ca2+ accumulation in the mitochondrial matrix dissipates membrane potential (ΔΨm), but Ca2+ binding of the intramitochondrial enzymes accelerates oxidative phosphorylation, leading to mitochondrial hyperpolarization. The levels of matrix free Ca2+ ([Ca2+]m) that trigger these metabolic responses in mitochondria in nerve terminals have not been determined. Here, we estimated [Ca2+]m in motor neuron terminals of Drosophila larvae using two methods: the relative responses of two chemical Ca2+ indicators with a 20-fold difference in Ca2+ affinity (rhod-FF and rhod-5N), and the response of a low-affinity, genetically encoded ratiometric Ca2+ indicator (D4cpv) calibrated against known Ca2+ levels. Matrix pH (pHm) and ΔΨm were monitored using ratiometric pericam and tetramethylrhodamine ethyl ester probe, respectively, to determine when mitochondrial energy metabolism was elevated. At rest, [Ca2+]m was 0.22 ± 0.04 μM, but it rose to ∼26 μM (24.3 ± 3.4 μM with rhod-FF/rhod-5N and 27.0 ± 2.6 μM with D4cpv) when the axon fired close to its endogenous frequency for only 2 s. This elevation in [Ca2+]m coincided with a rapid elevation in pHm and was followed by an after-stimulus ΔΨm hyperpolarization. However, pHm decreased and no ΔΨm hyperpolarization was observed in response to lower levels of [Ca2+]m, up to 13.1 μM. These data indicate that surprisingly high levels of [Ca2+]m are required to stimulate presynaptic mitochondrial energy metabolism.  相似文献   

4.
We studied the impact of grazing and substrate supply on the size structure of a freshwater bacterial strain (Flectobacillus sp.) which showed pronounced morphological plasticity. The cell length varied from 2 to >40 μm and encompassed rods, curved cells, and long filaments. Without grazers and with a sufficient substrate supply, bacteria grew mainly in the form of medium-sized rods (4 to 7 μm), with a smaller proportion (<10%) of filamentous forms. Grazing experiments with the bacterivorous flagellate Ochromonas sp. showed that freely suspended cells of <7 μm were highly vulnerable to grazers, whereas filamentous cells were resistant to grazing and became enriched during predation. A comparison of long-term growth in carbon-limited chemostats with and without grazers revealed that strikingly different bacterial populations developed: treatments with flagellates were composed of >80% filamentous cells. These attained a biomass comparable to that of populations in chemostats without grazers, which were composed of medium-sized rods and c-shaped cells. Carbon starvation resulted in a fast decrease in cell length and a shift towards small rods, which were highly vulnerable to grazing. Dialysis bag experiments in combination with continuous cultivation revealed that filament formation was significantly enhanced even without direct contact of bacteria with bacterivores and was thus probably stimulated by grazer excretory products.  相似文献   

5.
Trehalose uptake at 65°C in Rhodothermus marinus was characterized. The profile of trehalose uptake as a function of concentration showed two distinct types of saturation kinetics, and the analysis of the data was complicated by the activity of a periplasmic trehalase. The kinetic parameters of this enzyme determined in whole cells were as follows: Km = 156 ± 11 μM and Vmax = 21.2 ± 0.4 nmol/min/mg of total protein. Therefore, trehalose could be acted upon by this periplasmic activity, yielding glucose that subsequently entered the cell via the glucose uptake system, which was also characterized. To distinguish the several contributions in this intricate system, a mathematical model was developed that took into account the experimental kinetic parameters for trehalase, trehalose transport, glucose transport, competition data with trehalose, glucose, and palatinose, and measurements of glucose diffusion out of the periplasm. It was concluded that R. marinus has distinct transport systems for trehalose and glucose; moreover, the experimental data fit perfectly with a model considering a high-affinity, low-capacity transport system for trehalose (Km = 0.11 ± 0.03 μM and Vmax = 0.39 ± 0.02 nmol/min/mg of protein) and a glucose transporter with moderate affinity and capacity (Km = 46 ± 3 μM and Vmax = 48 ± 1 nmol/min/mg of protein). The contribution of the trehalose transporter is important only in trehalose-poor environments (trehalose concentrations up to 6 μM); at higher concentrations trehalose is assimilated primarily via trehalase and the glucose transport system. Trehalose uptake was constitutive, but the activity decreased 60% in response to osmotic stress. The nature of the trehalose transporter and the physiological relevance of these findings are discussed.  相似文献   

6.
The specific activity of aminoacyl-tRNA synthetases (spAARS), an index of growth rate, and of the electron transport system (spETS), an index of respiration, was measured in three size fractions (73–150 μm, >150 μm and >350 μm) of zooplankton during five cruises to tropical coastal waters of the Kimberley coast (North West Australia) and four cruises to waters of the Great Barrier Reef (GBR; North East Australia). The N-specific biomass of plankton was 3–4-fold higher in the Kimberley than on the GBR in all 3 size classes: Kimberley 1.27, 3.63, 1.94 mg m-3; GBR 0.36, 0.88 and 0.58 mg m-3 in the 73–150 μm, >150 μm and >350 μm size classes, respectively. Similarly, spAARS activity in the Kimberley was greater than that of the GBR: 88.4, 132.2, and 147.6 nmol PPi hr-1 mg protein -1 in the Kimberley compared with 71.7, 82.0 and 83.8 nmol PPi hr-1 mg protein -1 in the GBR, for the 73–150 μm, >150 μm and >350 μm size classes, respectively. Specific ETS activity showed similar differences in scale between the two coasts: 184.6, 148.8 and 92.2 μL O2 hr-1 mg protein-1 in the Kimberley, against 86.5, 88.3 and 71.3 μL O2 hr-1 mg protein-1 in the GBR. On the basis of these measurements, we calculated that >150 μm zooplankton grazing accounted for 7% of primary production in the Kimberley and 8% in GBR waters. Area-specific respiration by >73 μm zooplankton was 7-fold higher in the Kimberley than on the GBR and production by >150 μm zooplankton was of the order of 278 mg C m-2 d-1 in the Kimberley and 42 mg C m-2 d-1 on the GBR. We hypothesize that the much stronger physical forcing on the North West shelf is the principal driver of higher rates in the west than in the east of the continent.  相似文献   

7.
Mycobacteria are isolated from soil and water environments, where free-living amoebae live. Free-living amoebae are bactericidal, yet some rapidly growing mycobacteria are amoeba-resistant organisms that survive in the amoebal trophozoites and cysts. Such a capacity has not been studied for the environmental rapidly growing organism Mycobacterium gilvum. We investigated the ability of M. gilvum to survive in the trophozoites of Acanthamoeba polyphaga strain Linc-AP1 by using optical and electron microscopy and culture-based microbial enumerations in the presence of negative controls. We observed that 29% of A. polyphaga cells were infected by M. gilvum mycobacteria by 6 h postinfection. Surviving M. gilvum mycobacteria did not multiply and did not kill the amoebal trophozoites during a 5-day coculture. Extensive electron microscopy observations indicated that M. gilvum measured 1.4 ± 0.5 μm and failed to find M. gilvum organisms in the amoebal cysts. Further experimental study of two other rapidly growing mycobacteria, Mycobacterium rhodesiae and Mycobacterium thermoresistibile, indicated that both measured <2 μm and exhibited the same amoeba-mycobacterium relationships as M. gilvum. In general, we observed that mycobacteria measuring <2 μm do not significantly grow within and do not kill amoebal trophozoites, in contrast to mycobacteria measuring >2 μm (P < 0.05). The mechanisms underlying such an observation remain to be determined.  相似文献   

8.

Objectives

The main aim of this study was to investigate the effect of CYP2B6 gene polymorphisms on efavirenz (EFV) plasma concentrations in Han Chinese patients with human immunodeficiency virus (HIV) infection.

Methods

In total, 322 patients were recruited for study. EFV plasma concentrations at steady-state were determined using high-performance liquid chromatography. Genotyping for seven single nucleotide polymorphisms (SNPs), including 171+967C>A, 171+3212C>T, 171+4335T>C, 516G>T, 785A>G, 1295-913G>A, and *1355A>G of CYP2B6, was performed using ligase detection reaction (LDR). SPSS 18.0 and Haploview 4.2 were applied for statistical analyses.

Results

The average EFV concentration of patients was 2.35±2.09 μg/mL. Overall, 22% patients displayed EFV concentrations out of the therapeutic range of 1–4 μg/mL (13.1% < 1 μg/mL, 9.3% > 4 μg/mL). We observed significant association of 171+967C>A, 171+4335T>C, 516G>T, 785A>G and *1355A>G with high plasma EFV levels (p<.01). The predictive accuracy values of 171+4335CC, 516TT and 785GG for EFV concentrations > 4 μg/mL were 56.7%, 56.7% and 60%, respectively. We observed strong linkage disequilibrium for 171+967C>A, 171+4335T>C, 516G>T and 785A>G, resulting in five haplotypes. The frequencies of the five haplotypes (high to low) were as follows: CCTG (0.328), ACTG (0.280), ACCT (0.189), ATTG (0.186) and ACCG (0.017). The frequency of CCTG (0.524) in patients with EFV plasma concentrations < 1 μg/mL was significantly higher than that in other patient groups, while that of ACCT (0.733) was significantly higher in patients with EFV concentrations > 4 μg/mL, relative to other patient groups. Average EFV concentrations of patients carrying ACTG (1.78 μg/mL), ACCT (7.50 μg/mL), and ATTG (1.92 μg/mL) haplotypes were markedly higher than those of patients carrying the CCTG haplotype. The predictive accuracy of ACCT for EFV > 4 μg/mL was 81%.

Conclusions

Chinese patients administered standard doses of EFV require therapeutic drug monitoring or personalized medication management. Based on the current findings, we propose that 171+4335T>C, 516G>T, 785A>G and haplotype ACCT may be effectively used as genomic markers for EFV, which should aid in improving the efficacy of EFV-containing treatments and reduce the incidence of adverse reactions.  相似文献   

9.
Naturally occurring groups of muscle myosin behave differently from individual myosins or small groups commonly assayed in vitro. Here, we investigate the emergence of myosin group behavior with increasing myosin group size. Assuming the number of myosin binding sites (N) is proportional to actin length (L) (N = L/35.5 nm), we resolve in vitro motility of actin propelled by skeletal muscle myosin for L = 0.2–3 μm. Three distinct regimes were found: L < 0.3 μm, sliding arrest; 0.3 μm ≤ L ≤ 1 μm, alternation between arrest and continuous sliding; L > 1 μm, continuous sliding. We theoretically investigated the myosin group kinetics with mechanical coupling via actin. We find rapid actin sliding steps driven by power-stroke cascades supported by postpower-stroke myosins, and phases without actin sliding caused by prepower-stroke myosin buildup. The three regimes are explained: N = 8, rare cascades; N = 15, cascade bursts; N = 35, continuous cascading. Two saddle-node bifurcations occur for increasing N (mono → bi → mono-stability), with steady states corresponding to arrest and continuous cascading. The experimentally measured dependence of actin sliding statistics on L and myosin concentration is correctly predicted.  相似文献   

10.
Primary open angle glaucoma (POAG) is a multi-factorial optic disc neuropathy characterized by accelerating damage of the retinal ganglion cells and atrophy of the optic nerve head. The vulnerability of the optic nerve damage leading to POAG has been postulated to result from oxidative stress and mitochondrial dysfunction. In this study, we investigated the possible involvement of the mitochondrial genomic variants in 101 patients and 71 controls by direct sequencing of the entire mitochondrial genome. The number of variable positions in the mtDNA with respect to the revised Cambridge Reference Sequence (rCRS), have been designated “Segregating Sites”. The segregating sites present only in the patients or controls have been designated “Unique Segregating Sites (USS)”. The population mutation rate (θ = 4Neμ) as estimated by Watterson’s θ (θw), considering only the USS, was significantly higher among the patients (p = 9.8×10−15) compared to controls. The difference in θw and the number of USS were more pronounced when restricted to the coding region (p<1.31×10−21 and p = 0.006607, respectively). Further analysis of the region revealed non-synonymous variations were significantly higher in Complex I among the patients (p = 0.0053). Similar trends were retained when USS was considered only within complex I (frequency 0.49 vs 0.31 with p<0.0001 and mutation rate p-value <1.49×10−43) and ND5 within its gene cluster (frequency 0.47 vs 0.23 with p<0.0001 and mutation rate p-value <4.42×10−47). ND5 is involved in the proton pumping mechanism. Incidentally, glaucomatous trabecular meshwork cells have been reported to be more sensitive to inhibition of complex I activity. Thus mutations in ND5, expected to inhibit complex I activity, could lead to generation of oxidative stress and favor glaucomatous condition.  相似文献   

11.
Many Saccharomyces cerevisiae mutants defective in the SUMO pathway accumulate elevated levels of the native 2 μm circle plasmid (2 μm). Here we show that accumulation of 2 μm in the SUMO pathway mutants siz1Δ siz2Δ, slx5Δ, and slx8Δ is associated with formation of an aberrant high-molecular-weight (HMW) form of 2 μm. Characterization of this species from siz1Δ siz2Δ showed that it contains tandem copies of the 2 μm sequence as well as single-stranded DNA. Accumulation of this species requires both the 2 μm–encoded Flp recombinase and the cellular homologous recombination repair (HRR) pathway. Importantly, reduced SUMO attachment to Flp is sufficient to induce formation of this species. Our data suggest a model in which Flp that cannot be sumoylated causes DNA damage, whose repair via HRR produces an intermediate that generates tandem copies of the 2 μm sequence. This intermediate may be a rolling circle formed via break-induced replication (BIR), because mutants defective in BIR contain reduced levels of the HMW form. This work also illustrates the importance of using cir° strains when studying mutants that affect the yeast SUMO pathway, to avoid confusing direct functions of the SUMO pathway with secondary effects of 2 μm amplification.  相似文献   

12.
13.
A sigma-2 receptor agonist siramesine has been shown to trigger cell death of cancer cells and to exhibit a potent anticancer activity in vivo. However, its mechanism of action is still poorly understood. We show that siramesine can induce rapid cell death in a number of cell lines at concentrations above 20 μM. In HaCaT cells, cell death was accompanied by caspase activation, rapid loss of mitochondrial membrane potential (MMP), cytochrome c release, cardiolipin peroxidation and typical apoptotic morphology, whereas in U-87MG cells most apoptotic hallmarks were not notable, although MMP was rapidly lost. In contrast to the rapid loss of MMP above 20 μM siramesine, a rapid increase in lysosomal pH was observed at all concentrations tested (5–40 μM); however, it was not accompanied by lysosomal membrane permeabilisation (LMP) and the release of lysosomal enzymes into the cytosol. Increased lysosomal pH reduced the lysosomal degradation potential as indicated by the accumulation of immature forms of cysteine cathepsins. The lipophilic antioxidant α-tocopherol, but not the hydrophilic antioxidant N-acetyl-cysteine, considerably reduced cell death and destabilisation of mitochondrial membranes, but did not prevent the increase in lysosomal pH. At concentrations below 15 μM, siramesine triggered cell death after 2 days or later, which seems to be associated with a general metabolic and energy imbalance due to defects in the endocytic pathway, intracellular trafficking and energy production, and not by a specific molecular event. Overall, we show that cell death in siramesine-treated cells is induced by destabilisation of mitochondria and is independent of LMP and the release of cathepsins into the cytosol. Moreover, it is unlikely that siramesine acts exclusively through sigma-2 receptors, but rather through multiple molecular targets inside the cell. Our findings are therefore of significant importance in designing the next generation of siramesine analogues with high anticancer potential.  相似文献   

14.
Cut muscle fibers from Rana temporaria (sarcomere length, 3.5–3.9 μm; 14–16°C) were mounted in a double Vaseline-gap chamber and equilibrated with an external solution that contained tetraethyl ammonium– gluconate and an internal solution that contained Cs as the principal cation, 20 mM EGTA, and 0 Ca. Fibers were stimulated with a voltage-clamp pulse protocol that consisted of pulses to −70, −65, −60, −45, and −20 mV, each separated by 400-ms periods at −90 mV. The change in total Ca that entered into the myoplasm (Δ[CaT]) and the Ca content of the SR ([CaSR]) were estimated with the EGTA/phenol red method (Pape, P.C., D.-S. Jong, and W.K. Chandler. 1995. J. Gen. Physiol. 106:259–336). Fibers were stimulated with the pulse protocol, usually every 5 min, so that the resting value of [CaSR] decreased from its initial value of 1,700–2,300 μM to values near or below 100 μM after 18–30 stimulations. Three main findings for the voltage pulses to −70, −65, and −60 mV are: (a) the depletion-corrected rate of Ca release (release permeability) showed little change when [CaSR] decreased from its highest level (>1,700 μM) to ∼1,000 μM; (b) as [CaSR] decreased below 1,000 μM, the release permeability increased to a maximum level when [CaSR] was near 300 μM that was on average about sevenfold larger than the values observed for [CaSR] > 1,000 μM; and (c) as [CaSR] decreased from ∼300 μM to <100 μM, the release permeability decreased, reaching half its maximum value when [CaSR] was ∼110 μM on average. It was concluded that finding b was likely due to a decrease in Ca inactivation, while finding c was likely due to a decrease in Ca-induced Ca release.  相似文献   

15.
In this study, we evaluated the effects of dietary intake of vitamin B12 and folate during pregnancy and their interactions with maternal polymorphism of MTHFR (677C>T; 1298A>C) on intrauterine development. Anthropometric parameters were obtained from 231 newborns that belong to a prospective birth cohort in Morelos, Mexico. Maternal dietary intake of vitamin B12 and folate was assessed using a semi-quantitative questionnaire administered during the first and third trimesters of the pregnancy. Maternal MTHFR 677C>T and 1298 A>C genotypes were determined by PCR–RFLP. The associations between deficient dietary intake of vitamin B12 (<2.0 μg/d) and folate (<400 μg/d) in the first and third trimesters and maternal polymorphisms of MTHFR on anthropometric parameters at birth were estimated using a multivariate linear regression model. During pregnancy, the deficient dietary intake was roughly 60 % for folate and 19 % for vitamin B12. Allelic frequencies of 677T and 1298C were 59 and 10 %, respectively. After adjusting for confounders, deficiency in maternal dietary intake of vitamin B12 (<2.0 μg/d) was associated with a significant reduction in length (β ~ −2.4; 95 % CI −4.3; −0.6) and length-for-age at birth (β ~ −1.2; 95 % CI −2.3; −0.1) among infants whose mothers were carriers of the 677TT genotype (p for interaction = 0.02). In contrast, no association was observed between deficiency in maternal dietary intake of folate (<400 μg/d) and any anthropometric parameter of newborns. These results suggest that supplementation with vitamin B12 during pregnancy could have a favorable impact on intrauterine fetal development mainly in populations that are genetically susceptible.  相似文献   

16.
There is considerable controversy with regard to the genotoxicity of glyphosate, with some reports stating that this compound is non-toxic for fish, birds and mammals. In this work, we used the comet assay to examine the genotoxicity of glyphosate isopropylamine (0.7, 7, 70 and 700 μM) in human lymphocytes, erythrocytes of Oreochromis niloticus and staminal nuclei of Tradescantia (4430) in vitro and in vivo. Cells, nuclei and fish that had and had not been exposed to 5 mM N-nitrosodiethylamine (NDEA) were used as positive and negative controls, respectively. Significant (p < 0.01) genetic damage was observed in vivo and in vitro in all cell types and organisms tested. Human lymphocytes and Tradescantia hairs showed lower genetic damage in vivo compared to in vitro, possibly because of efficient metabolization of the herbicide. In O. niloticus erythrocytes, significant (p < 0.001) genotoxicity was observed at ≥ 7 μM, whereas in vitro, glyphosphate was genotoxic in human lymphocytes and Tradescantia hairs at ≥ 0.7 μM. These results indicate that glyphosate is genotoxic in the cells and organisms studied at concentrations of 0.7–7 μM.  相似文献   

17.
Replication of the mitochondrial genome by DNA polymerase γ requires dNTP precursors that are subject to oxidation by reactive oxygen species generated by the mitochondrial respiratory chain. One such oxidation product is 8-oxo-dGTP, which can compete with dTTP for incorporation opposite template adenine to yield A-T to C-G transversions. Recent reports indicate that the ratio of undamaged dGTP to dTTP in mitochondrial dNTP pools from rodent tissues varies from ~1:1 to >100:1. Within this wide range, we report here the proportion of 8-oxo-dGTP in the dNTP pool that would be needed to reduce the replication fidelity of human DNA polymerase γ. When various in vivo mitochondrial dNTP pools reported previously were used here in reactions performed in vitro, 8-oxo-dGTP was readily incorporated opposite template A and the resulting 8-oxo-G-A mismatch was not proofread efficiently by the intrinsic 3′ exonuclease activity of pol γ. At the dNTP ratios reported in rodent tissues, whether highly imbalanced or relatively balanced, the amount of 8-oxo-dGTP needed to reduce fidelity was <1% of dGTP. Moreover, direct measurements reveal that 8-oxo-dGTP is present at such concentrations in the mitochondrial dNTP pools of several rat tissues. The results suggest that oxidized dNTP precursors may contribute to mitochondrial mutagenesis in vivo, which could contribute to mitochondrial dysfunction and disease.  相似文献   

18.
Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that offer the prospect of high chemo-, regio-, and enantioselectivity in the organic synthesis of lactones or esters from a variety of ketones. In this study, we have cloned, sequenced, and overexpressed in Escherichia coli a new BVMO, cyclopentadecanone monooxygenase (CpdB or CPDMO), originally derived from Pseudomonas sp. strain HI-70. The 601-residue primary structure of CpdB revealed only 29% to 50% sequence identity to those of known BVMOs. A new sequence motif, characterized by a cluster of charged residues, was identified in a subset of BVMO sequences that contain an N-terminal extension of ~60 to 147 amino acids. The 64-kDa CPDMO enzyme was purified to apparent homogeneity, providing a specific activity of 3.94 μmol/min/mg protein and a 20% yield. CPDMO is monomeric and NADPH dependent and contains ~1 mol flavin adenine dinucleotide per mole of protein. A deletion mutant suggested the importance of the N-terminal 54 amino acids to CPDMO activity. In addition, a Ser261Ala substitution in a Rossmann fold motif resulted in an improved stability and increased affinity of the enzyme towards NADPH compared to the wild-type enzyme (Km = 8 μM versus Km = 24 μM). Substrate profiling indicated that CPDMO is unusual among known BVMOs in being able to accommodate and oxidize both large and small ring substrates that include C11 to C15 ketones, methyl-substituted C5 and C6 ketones, and bicyclic ketones, such as decalone and β-tetralone. CPDMO has the highest affinity (Km = 5.8 μM) and the highest catalytic efficiency (kcat/Km ratio of 7.2 × 105 M−1 s−1) toward cyclopentadecanone, hence the Cpd designation. A number of whole-cell biotransformations were carried out, and as a result, CPDMO was found to have an excellent enantioselectivity (E > 200) as well as 99% S-selectivity toward 2-methylcyclohexanone for the production of 7-methyl-2-oxepanone, a potentially valuable chiral building block. Although showing a modest selectivity (E = 5.8), macrolactone formation of 15-hexadecanolide from the kinetic resolution of 2-methylcyclopentadecanone using CPDMO was also demonstrated.  相似文献   

19.
Inhibition of β-amyloid (Aβ) aggregation in the cerebral cortex of the brain is a promising therapeutic and defensive strategy in identification of disease modifying agents for Alzheimer’s disease (AD). Since natural products are considered as the current alternative trend for the discovery of AD drugs, the present study aims at the evaluation of anti-amyloidogenic potential of the marine seaweed Padina gymnospora. Prevention of aggregation and disaggregation of the mature fibril formation of Aβ 25–35 by acetone extracts of P. gymnospora (ACTPG) was evaluated in two phases by Thioflavin T assay. The results were further confirmed by confocal laser scanning microscopy (CLSM) analysis and Fourier transform infrared (FTIR) spectroscopic analysis. The results of antiaggregation and disaggregation assay showed that the increase in fluorescence intensity of aggregated Aβ and the co-treatment of ACTPG (250 μg/ml) with Aβ 25–35, an extensive decrease in the fluorescence intensity was observed in both phases, which suggests that ACTPG prevents the oligomers formation and disaggregation of mature fibrils. In addition, ACTPG was subjected to column chromatography and the bioactivity was screened based on the cholinesterase inhibitory activity. Finally, the active fraction was subjected to LC-MS/MS analysis for the identification of bioactive compounds. Overall, the results suggest that the bioactive compound alpha bisabolol present in the alga might be responsible for the observed cholinesterase inhibition with the IC50 value < 10 μg/ml for both AChE and BuChE when compared to standard drug donepezil (IC50 value < 6 μg/ml) and support its use for the treatment of neurological disorders.  相似文献   

20.
Micro-osmotic manipulation was used to determine the influence of osmotic contraction on the expansion potential of individual protoplasts isolated from rye (Secale cereale L. cv Puma) leaves. For protoplasts isolated from leaves of nonacclimated plants (NA protoplasts), osmotic contraction in sufficiently hypertonic solutions (>1.53 osmolal) predisposed the protoplasts to lysis during osmotic expansion when they were returned to isotonic conditions (0.53 osmolal). In contrast, for protoplasts isolated from leaves of cold acclimated plants (ACC protoplasts), osmotic contraction in either 2.6 or 4.0 osmolal solutions was readily reversible. Following osmotic contraction, the resting tension (γr) of NA protoplasts was similar to that determined for protoplasts in isotonic solutions (i.e. 110 ± 22 micronewtons per meter). In contrast, γr of ACC protoplasts decreased from 164 ± 27 micronewtons per meter in isotonic solutions to values close to zero in hypertonic solutions. Following expansion in hypotonic solutions, γr's of both NA and ACC protoplasts were similar for area expansions over the range of 1.3 to 1.6. Following osmotic contraction and reexpansion of NA protoplasts, hysteresis was observed in the relationship between γr and surface area—with higher values of γr at a given surface area. In contrast, no hysteresis was observed in this relationship for ACC protoplasts. Direct measurements of plasma membrane tension (γ) during osmotic expansion of NA protoplasts from hypertonic solutions (1.53 osmolal) revealed that γ increased rapidly after small increments in surface area, and lysis occurred over a range of 1.2 to 8 millinewtons per meter. During osmotic expansion of ACC protoplasts from hypertonic solutions (2.6 osmolal), there was little increase in γ until after the isotonic surface area was exceeded. These results are discussed in relation to the differences in the behavior of the plasma membrane of NA and ACC protoplasts during osmotic contraction (i.e. endocytotic vesiculation versus exocytotic extrusion) and provide a mechanistic interpretation to account for the differential sensitivity of NA and ACC protoplasts to osmotic expansion from hypertonic solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号