首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative analysis of discovery-based proteomic workflows now relies on high-throughput large-scale methods for identification and quantitation of proteins and post-translational modifications. Advancements in label-free quantitative techniques, using either data-dependent or data-independent mass spectrometric acquisitions, have coincided with improved instrumentation featuring greater precision, increased mass accuracy, and faster scan speeds. We recently reported on a new quantitative method called MS1 Filtering (Schilling et al. (2012) Mol. Cell. Proteomics 11, 202–214) for processing data-independent MS1 ion intensity chromatograms from peptide analytes using the Skyline software platform. In contrast, data-independent acquisitions from MS2 scans, or SWATH, can quantify all fragment ion intensities when reference spectra are available. As each SWATH acquisition cycle typically contains an MS1 scan, these two independent label-free quantitative approaches can be acquired in a single experiment. Here, we have expanded the capability of Skyline to extract both MS1 and MS2 ion intensity chromatograms from a single SWATH data-independent acquisition in an Integrated Dual Scan Analysis approach. The performance of both MS1 and MS2 data was examined in simple and complex samples using standard concentration curves. Cases of interferences in MS1 and MS2 ion intensity data were assessed, as were the differentiation and quantitation of phosphopeptide isomers in MS2 scan data. In addition, we demonstrated an approach for optimization of SWATH m/z window sizes to reduce interferences using MS1 scans as a guide. Finally, a correlation analysis was performed on both MS1 and MS2 ion intensity data obtained from SWATH acquisitions on a complex mixture using a linear model that automatically removes signals containing interferences. This work demonstrates the practical advantages of properly acquiring and processing MS1 precursor data in addition to MS2 fragment ion intensity data in a data-independent acquisition (SWATH), and provides an approach to simultaneously obtain independent measurements of relative peptide abundance from a single experiment.Mass spectrometry is the leading technology for large-scale identification and quantitation of proteins and post-translational modifications (PTMs)1 in biological systems (1, 2). Although several types of experimental designs are employed in such workflows, most large-scale applications use data-dependent acquisitions (DDA) where peptide precursors are first identified in the MS1 scan and one or more peaks are then selected for subsequent fragmentation to generate their corresponding MS2 spectra. In experiments using DDA, one can employ either chemical/metabolic labeling or label-free strategies for relative quantitation of peptides (and proteins) (3, 4). Depending on the type of labeling approach employed, i.e. metabolic labeling with SILAC or postmetabolic labeling with ICAT or isobaric tags such as iTRAQ or TMT, the relative quantitation of these peptides are made using either MS1 or MS2 ion intensity data (47). Label-free quantitative techniques have until recently been based entirely on integrated ion intensity measurements of precursors in the MS1 scan, or in the case of spectral counting the number of assigned MS2 spectra (3, 8, 9).Label-free approaches have recently generated more widespread interest (1012), in part because of their adaptability to a wide range of proteomic workflows, including human samples that are not amenable to most metabolic labeling techniques, or where chemical labeling may be cost prohibitive and/or interfere with subsequent enrichment steps (11, 13). However the use of DDA for label-free quantitation is also susceptible to several limitations including insufficient reproducibility because of under-sampling, digestion efficiency, as well as misidentifications (14, 15). Moreover, low ion abundance may prohibit peptide selection, especially in complex samples (14). These limitations often present challenges in data analysis when making comparisons across samples, or when a peptide is sampled in only one of the study conditions.To address the challenges in obtaining more comprehensive sampling in MS1 space, Purvine et al. first demonstrated the ability to obtain sequence information from peptides fragmented across the entire m/z range using “shotgun or parallel collision-induced dissociation (CID)” on an orthogonal time of flight instrument (16). Shortly thereafter Venable et al. reported on a data independent acquisition methodology to limit the complexity of the MS2 scan by using a segmented approach for the sequential isolation and fragmentation of all peptides in a defined precursor window (e.g. 10 m/z) using an ion trap mass spectrometer (17). However, the proper implementation of this DIA technique suffered from technical limitations of instruments available at that time, including slow acquisition rates and low MS2 resolution that made systematic product ion extraction problematic. To alleviate the challenge of long duty cycles in DIAs, researchers at the Waters Corporation adopted an alternative approach by rapidly switching between low (MS1) and high energy (MS2) scans and then using proprietary software to align peptide precursor and fragment ion information to determine peptide sequences (18, 19). Recent mass spectrometry innovations in efficient high-speed scanning capabilities, together with high-resolution data acquisition of both MS1 and MS2 scans, and multiplexing of scan windows have overcome many of these limitations (10, 20, 21). Moreover, the simultaneous development of novel software solutions for extracting ion intensity chromatograms based on spectral libraries has enabled the use of DIA for large-scale label free quantitation of multiple peptide analytes (21, 22). In addition to targeting specific peptides from a previously generated peptide spectral library, the data can also be reexamined (i.e. post-acquisition) for additional peptides of interest as new reference data emerges. On the SCIEX TripleTOF 5600, a quadrupole orthogonal time-of-flight mass spectrometer, this technique has been optimized and extended to what is called ‘SWATH MS2′ based on a combination of new technical and software improvements (10, 22).In a DIA experiment a MS1 survey scan is carried out across the mass range followed by a SWATH MS2 acquisition series, however the cycle time of the MS1 scan is dramatically shortened compared with DDA type experiments. The Q1 quadrupole is set to transmit a wider window, typically Δ25 m/z, to the collision cell in incremental steps over the full mass range. Therefore the MS/MS spectra produced during a SWATH MS2 acquisition are of much greater complexity as the MS/MS spectra are a composite of all fragment ions produced from peptide analytes with molecular ions within the selected MS1 m/z window. The cycle of data independent MS1 survey scans and SWATH MS2 scans is repeated throughout the entire LC-MS acquisition. Fragment ion information contained in these SWATH MS2 spectra can be used to uniquely identify specific peptides by comparisons to reference spectra or spectral libraries. Moreover, ion intensities of these fragment ions can also be used for quantitation. Although MS2 typically increases selectivity and reduces the chemical noise often observed in MS1 scans, quantifying peptides from SWATH MS2 scans can be problematic because of the presence of interferences in one or more fragment ions or decreased ion intensity of MS2 scans as compared with the MS1 precursor ion abundance.To partially alleviate some of these limitations in SWATH MS2 scan quantitation it is potentially advantageous to exploit MS1 ion intensity data, which is acquired independently as part of each SWATH scan cycle. Recently, our laboratories and others have developed label free quantitation tools for data dependent acquisitions (11, 12, 23) using MS1 ion intensity data. For example, the MS1 Filtering algorithm uses expanded features in the open source software application Skyline (11, 24). Skyline MS1 Filtering processes precursor ion intensity chromatograms of peptide analytes from full scan mass spectral data acquired during data dependent acquisitions by LC MS/MS. New graphical tools were developed within Skyline to enable visual inspection and manual interrogation and integration of extracted ion chromatograms across multiple acquisitions. MS1 Filtering was subsequently shown to have excellent linear response across several orders of magnitude with limits of detection in the low attomole range (11). We, and others, have demonstrated the utility of this method for carrying out large-scale quantitation of peptide analytes across a range of applications (2528). However, quantifying peptides based on MS1 precursor ion intensities can be compromised by a low signal-to-noise ratio. This is particularly the case when quantifying low abundance peptides in a complex sample where the MS1 ion “background” signal is high, or when chromatograms contain interferences, or partial overlap of multiple target precursor ions.Currently MS1 scans are underutilized or even deemphasized by some vendors during DIA workflows. However, we believe an opportunity exists that would improve data-independent acquisitions (DIA) experiments by including MS1 ion intensity data in the final data processing of LC-MS/MS acquisitions. Therefore, to address this possibility, we have adapted Skyline to efficiently extract and process both precursor and product ion chromatograms for label free quantitation across multiple samples. The graphical tools and features originally developed for SRM and MS1 Filtering experiments have been expanded to process DIA data sets from multiple vendors including SCIEX, Thermo, Waters, Bruker, and Agilent. These expanded features provide a single platform for data mining of targeted proteomics using both the MS1 and MS2 scans that we call Integrated Dual Scan Analysis, or IDSA. As a test of this approach, a series of SWATH MS2 acquisitions of simple and complex mixtures was analyzed on an SCIEX TripleTOF 5600 mass spectrometer. We also investigated the use of MS2 scans for differentiating a case of phosphopeptide isomers that are indistinguishable at the MS1 level. In addition, we investigated whether smaller SWATH m/z windows would provide more reliable quantitative data in these cases by reducing the number of potential interferences. Lastly, we performed a statistical assessment of the accuracy and reproducibility of the estimated (log) fold change of mitochondrial lysates from mouse liver at different concentration levels to better assess the overall value of acquiring MS1 and MS2 data in combination and as independent measurements during DIA experiments.  相似文献   

2.
Current analytical strategies for collecting proteomic data using data-dependent acquisition (DDA) are limited by the low analytical reproducibility of the method. Proteomic discovery efforts that exploit the benefits of DDA, such as providing peptide sequence information, but that enable improved analytical reproducibility, represent an ideal scenario for maximizing measureable peptide identifications in “shotgun”-type proteomic studies. Therefore, we propose an analytical workflow combining DDA with retention time aligned extracted ion chromatogram (XIC) areas obtained from high mass accuracy MS1 data acquired in parallel. We applied this workflow to the analyses of sample matrixes prepared from mouse blood plasma and brain tissues and observed increases in peptide detection of up to 30.5% due to the comparison of peptide MS1 XIC areas following retention time alignment of co-identified peptides. Furthermore, we show that the approach is quantitative using peptide standards diluted into a complex matrix. These data revealed that peptide MS1 XIC areas provide linear response of over three orders of magnitude down to low femtomole (fmol) levels. These findings argue that augmenting “shotgun” proteomic workflows with retention time alignment of peptide identifications and comparative analyses of corresponding peptide MS1 XIC areas improve the analytical performance of global proteomic discovery methods using DDA.Label-free methods in mass spectrometry-based proteomics, such as those used in common “shotgun” proteomic studies, provide peptide sequence information as well as relative measurements of peptide abundance (13). A common data acquisition strategy is based on data-dependent acquisition (DDA)1 where the most abundant precursor ions are selected for tandem mass spectrometry (MS/MS) analysis (12). DDA attempts to minimize redundant peptide precursor selection and maximize the depth of proteome coverage (2). However, the analytical reproducibility of peptide identifications obtained using DDA-based methods result in <75% overlap between technical replicates (34). Comparisons of peptide identifications between replicate analyses have shown that the rate of new peptide identifications increases sharply following two replicate sample injections and gradually tapers off after approximately five replicate injections (4). This phenomenon is due, in part, to the semirandom sampling of peptides in a DDA experiment (5).Alternate label-free methods focused on measuring the abundance of intact peptide ions, such as the accurate mass and time tag (AMT) approach (68, 42), are aimed at differential analyses of extracted ion chromatogram (XIC) areas integrated from high mass accuracy peptide precursor mass spectra (MS1 spectra) exhibiting discrete chromatographic elution times. This method is particularly powerful for the analysis of post-translationally modified (PTM) peptides as pairing the low abundance of PTM candidates with the variable nature of DDA complicates comparisons between samples (9, 43). However, label-free strategies focused on the analysis of peptide MS1 XIC areas are dependent on a priori knowledge of peptide ions and retention times (210). Thus, prospective analyses of samples are needed to assess peptides and their respective retention times. This prospective analysis may not be possible for reagent-limited samples. Further, the usage of previously established peptide features in the analysis of different sample types can be confounded by unknown matrix effects that can produce variable retention time characteristics and peptide ion suppression (2). Therefore, proteomic strategies that make use of DDA, to provide peptide sequence information and identify features within the sample, but that also use MS1 data for comparisons between samples, represent an ideal combination for maximizing measureable peptide identification events in “shotgun” proteomic discovery analyses.Here we describe an analytical workflow that combines traditional DDA methods with the analysis of retention time aligned XIC areas extracted from high mass accuracy peptide precursor MS1 spectra. This method resulted in a 25.1% (±6.6%) increase in measureable peptide identification events across samples of diverse composition because of the inferential extraction of peptide MS1 XIC areas in sample sets lacking corresponding MS/MS events. These findings were observed in measurements of peptide MS1 XIC abundances using sample types ranging from tryptic digests of olfactory bulb tissues dissected from Homer2 knockout and wild-type mice to mouse blood plasma exhibiting differential levels of hemolysis. We further establish that this method is quantitative using a dilution series of known bovine standard peptide concentrations spiked into mouse blood plasma. These data show that comparative analysis between samples should be performed using peptide MS1 data as opposed to semirandomly sampled peptide MS/MS data. This approach maximizes the number of peptides that can be compared between samples.  相似文献   

3.
4.
Based on conventional data-dependent acquisition strategy of shotgun proteomics, we present a new workflow DeMix, which significantly increases the efficiency of peptide identification for in-depth shotgun analysis of complex proteomes. Capitalizing on the high resolution and mass accuracy of Orbitrap-based tandem mass spectrometry, we developed a simple deconvolution method of “cloning” chimeric tandem spectra for cofragmented peptides. Additional to a database search, a simple rescoring scheme utilizes mass accuracy and converts the unwanted cofragmenting events into a surprising advantage of multiplexing. With the combination of cloning and rescoring, we obtained on average nine peptide-spectrum matches per second on a Q-Exactive workbench, whereas the actual MS/MS acquisition rate was close to seven spectra per second. This efficiency boost to 1.24 identified peptides per MS/MS spectrum enabled analysis of over 5000 human proteins in single-dimensional LC-MS/MS shotgun experiments with an only two-hour gradient. These findings suggest a change in the dominant “one MS/MS spectrum - one peptide” paradigm for data acquisition and analysis in shotgun data-dependent proteomics. DeMix also demonstrated higher robustness than conventional approaches in terms of lower variation among the results of consecutive LC-MS/MS runs.Shotgun proteomics analysis based on a combination of high performance liquid chromatography and tandem mass spectrometry (MS/MS) (1) has achieved remarkable speed and efficiency (27). In a single four-hour long high performance liquid chromatography-MS/MS run, over 40,000 peptides and 5000 proteins can be identified using a high-resolution Orbitrap mass spectrometer with data-dependent acquisition (DDA)1 (2, 3). However, in a typical LC-MS analysis of unfractionated human cell lysate, over 100,000 individual peptide isotopic patterns can be detected (4), which corresponds to simultaneous elution of hundreds of peptides. With this complexity, a mass spectrometer needs to achieve ≥25 Hz MS/MS acquisition rate to fully sample all the detectable peptides, and ≥17 Hz to cover reasonably abundant ones (4). Although this acquisition rate is reachable by modern time-of-flight (TOF) instruments, the reported DDA identification results do not encompass all expected peptides. Recently, the next-generation Orbitrap instrument, working at 20 Hz MS/MS acquisition rate, demonstrated nearly full profiling of yeast proteome using an 80 min gradient, which opened the way for comprehensive analysis of human proteome in a time efficient manner (5).During the high performance liquid chromatography-MS/MS DDA analysis of complex samples, high density of co-eluting peptides results in a high probability for two or more peptides to overlap within an MS/MS isolation window. With the commonly used ±1.0–2.0 Th isolation windows, most MS/MS spectra are chimeric (4, 810), with cofragmenting precursors being naturally multiplexed. However, as has been discussed previously (9, 10), the cofragmentation events are currently ignored in most of the conventional analysis workflows. According to the prevailing assumption of “one MS/MS spectrum–one peptide,” chimeric MS/MS spectra are generally unwelcome in DDA, because the product ions from different precursors may interfere with the assignment of MS/MS fragment identities, increasing the rate of false discoveries in database search (8, 9). In some studies, the precursor isolation width was set as narrow as ±0.35 Th to prevent unwanted ions from being coselected, fragmented or detected (4, 5).On the contrary, multiplexing by cofragmentation is considered to be one of the solid advantages in data-independent acquisition (DIA) (1013). In several commonly used DIA methods, the precursor ion selection windows are set much wider than in DDA: from 25 Th as in SWATH (12), to extremely broad range as in AIF (13). In order to use the benefit of MS/MS multiplexing in DDA, several approaches have been proposed to deconvolute chimeric MS/MS spectra. In “alternative peptide identification” method implemented in Percolator (14), a machine learning algorithm reranks and rescores peptide-spectrum matches (PSMs) obtained from one or more MS/MS search engines. But the deconvolution in Percolator is limited to cofragmented peptides with masses differing from the target peptide by the tolerance of the database search, which can be as narrow as a few ppm. The “active demultiplexing” method proposed by Ledvina et al. (15) actively separates MS/MS data from several precursors using masses of complementary fragments. However, higher-energy collisional dissociation often produces MS/MS spectra with too few complementary pairs for reliable peptide identification. The “MixDB” method introduces a sophisticated new search engine, also with a machine learning algorithm (9). And the “second peptide identification” method implemented in Andromeda/MaxQuant workflow (16) submits the same dataset to the search engine several times based on the list of chromatographic peptide features, subtracting assigned MS/MS peaks after each identification round. This approach is similar to the ProbIDTree search engine that also performed iterative identification while removing assigned peaks after each round of identification (17).One important factor for spectral deconvolution that has not been fully utilized in most conventional workflows is the excellent mass accuracy achievable with modern high-resolution mass spectrometry (18). An Orbitrap Fourier-transform mass spectrometer can provide mass accuracy in the range of hundreds of ppb (parts per billion) for mass peaks with high signal-to-noise (S/N) ratio (19). However, the mass error of peaks with lower S/N ratios can be significantly higher and exceed 1 ppm. Despite this dependence of the mass accuracy from the S/N level, most MS and MS/MS search engines only allow users to set hard cut-off values for the mass error tolerances. Moreover, some search engines do not provide the option of choosing a relative error tolerance for MS/MS fragments. Such negligent treatment of mass accuracy reduces the analytical power of high accuracy experiments (18).Identification results coming from different MS/MS search engines are sometimes not consistent because of different statistical assumptions used in scoring PSMs. Introduction of tools integrating the results of different search engines (14, 20, 21) makes the data interpretation even more complex and opaque for the user. The opposite trend—simplification of MS/MS data interpretation—is therefore a welcome development. For example, an extremely straightforward algorithm recently proposed by Wenger et al. (22) demonstrated a surprisingly high performance in peptide identification, even though it is only marginally more complex than simply counting the number of matches of theoretical fragment peaks in high resolution MS/MS, without any a priori statistical assumption.In order to take advantage of natural multiplexing of MS/MS spectra in DDA, as well as properly utilize high accuracy of Orbitrap-based mass spectrometry, we developed a simple and robust data analysis workflow DeMix. It is presented in Fig. 1 as an expansion of the conventional workflow. Principles of some of the processes used by the workflow are borrowed from other approaches, including the custom-made mass peak centroiding (20), chromatographic feature detection (19, 20), and two-pass database search with the first limited pass to provide a “software lock mass” for mass scale recalibration (23).Open in a separate windowFig. 1.An overview of the DeMix workflow that expands the conventional workflow, shown by the dashed line. Processes are colored in purple for TOPP, red for search engine (Morpheus/Mascot/MS-GF+), and blue for in-house programs.In DeMix workflow, the deconvolution of chimeric MS/MS spectra consists of simply “cloning” an MS/MS spectrum if a potential cofragmented peptide is detected. The list of candidate peptide precursors is generated from chromatographic feature detection, as in the MaxQuant/Andromeda workflow (16, 19), but using The OpenMS Proteomics Pipeline (TOPP) (20, 24). During the cloning, the precursor is replaced by the new candidate, but no changes in the MS/MS fragment list are made, and therefore the cloned MS/MS spectra remain chimeric. Processing such spectra requires a search engine tolerant to the presence of unassigned peaks, as such peaks are always expected when multiple precursors cofragment. Thus, we chose Morpheus (22) as a search engine. Based on the original search algorithm, we implement a reformed scoring scheme: Morpheus-AS (advanced scoring). It inherits all the basic principles from Morpheus but deeper utilizes the high mass accuracy of the data. This kind of database search removes the necessity of spectral processing for physical separation of MS/MS data into multiple subspectra (15), or consecutive subtraction of peaks (16, 17).Despite the fact that DeMix workflow is largely a combination of known approaches, it provides remarkable improvement compared with the state-of-the-art. On our Orbitrap Q-Exactive workbench, testing on a benchmark dataset of two-hour single-dimension LC-MS/MS experiments from HeLa cell lysate, we identified on average 1.24 peptide per MS/MS spectrum, breaking the “one MS/MS spectrum–one peptide” paradigm on the level of whole data set. At 1% false discovery rate (FDR), we obtained on average nine PSMs per second (at the actual acquisition rate of ca. seven MS/MS spectra per second), and detected 40 human proteins per minute.  相似文献   

5.
In large-scale proteomic experiments, multiple peptide precursors are often cofragmented simultaneously in the same mixture tandem mass (MS/MS) spectrum. These spectra tend to elude current computational tools because of the ubiquitous assumption that each spectrum is generated from only one peptide. Therefore, tools that consider multiple peptide matches to each MS/MS spectrum can potentially improve the relatively low spectrum identification rate often observed in proteomics experiments. More importantly, data independent acquisition protocols promoting the cofragmentation of multiple precursors are emerging as alternative methods that can greatly improve the throughput of peptide identifications but their success also depends on the availability of algorithms to identify multiple peptides from each MS/MS spectrum. Here we address a fundamental question in the identification of mixture MS/MS spectra: determining the statistical significance of multiple peptides matched to a given MS/MS spectrum. We propose the MixGF generating function model to rigorously compute the statistical significance of peptide identifications for mixture spectra and show that this approach improves the sensitivity of current mixture spectra database search tools by a ≈30–390%. Analysis of multiple data sets with MixGF reveals that in complex biological samples the number of identified mixture spectra can be as high as 20% of all the identified spectra and the number of unique peptides identified only in mixture spectra can be up to 35.4% of those identified in single-peptide spectra.The advancement of technology and instrumentation has made tandem mass (MS/MS)1 spectrometry the leading high-throughput method to analyze proteins (1, 2, 3). In typical experiments, tens of thousands to millions of MS/MS spectra are generated and enable researchers to probe various aspects of the proteome on a large scale. Part of this success hinges on the availability of computational methods that can analyze the large amount of data generated from these experiments. The classical question in computational proteomics asks: given an MS/MS spectrum, what is the peptide that generated the spectrum? However, it is increasingly being recognized that this assumption that each MS/MS spectrum comes from only one peptide is often not valid. Several recent analyses show that as many as 50% of the MS/MS spectra collected in typical proteomics experiments come from more than one peptide precursor (4, 5). The presence of multiple peptides in mixture spectra can decrease their identification rate to as low as one half of that for MS/MS spectra generated from only one peptide (6, 7, 8). In addition, there have been numerous developments in data independent acquisition (DIA) technologies where multiple peptide precursors are intentionally selected to cofragment in each MS/MS spectrum (9, 10, 11, 12, 13, 14, 15). These emerging technologies can address some of the enduring disadvantages of traditional data-dependent acquisition (DDA) methods (e.g. low reproducibility (16)) and potentially increase the throughput of peptide identification 5–10 fold (4, 17). However, despite the growing importance of mixture spectra in various contexts, there are still only a few computational tools that can analyze mixture spectra from more than one peptide (18, 19, 20, 21, 8, 22). Our recent analysis indicated that current database search methods for mixture spectra still have relatively low sensitivity compared with their single-peptide counterpart and the main bottleneck is their limited ability to separate true matches from false positive matches (8). Traditionally problem of peptide identification from MS/MS spectra involves two sub-problems: 1) define a Peptide-Spectrum-Match (PSM) scoring function that assigns each MS/MS spectrum to the peptide sequence that most likely generated the spectrum; and 2) given a set of top-scoring PSMs, select a subset that corresponds to statistical significance PSMs. Here we focus on the second problem, which is still an ongoing research question even for the case of single-peptide spectra (23, 24, 25, 26). Intuitively the second problem is difficult because one needs to consider spectra across the whole data set (instead of comparing different peptide candidates against one spectrum as in the first problem) and PSM scoring functions are often not well-calibrated across different spectra (i.e. a PSM score of 50 may be good for one spectrum but poor for a different spectrum). Ideally, a scoring function will give high scores to all true PSMs and low scores to false PSMs regardless of the peptide or spectrum being considered. However, in practice, some spectra may receive higher scores than others simply because they have more peaks or their precursor mass results in more peptide candidates being considered from the sequence database (27, 28). Therefore, a scoring function that accounts for spectrum or peptide-specific effects can make the scores more comparable and thus help assess the confidence of identifications across different spectra. The MS-GF solution to this problem is to compute the per-spectrum statistical significance of each top-scoring PSM, which can be defined as the probability that a random peptide (out of all possible peptide within parent mass tolerance) will match to the spectrum with a score at least as high as that of the top-scoring PSM. This measures how good the current best match is in relation to all possible peptides matching to the same spectrum, normalizing any spectrum effect from the scoring function. Intuitively, our proposed MixGF approach extends the MS-GF approach to now calculate the statistical significance of the top pair of peptides matched from the database to a given mixture spectrum M (i.e. the significance of the top peptide–peptide spectrum match (PPSM)). As such, MixGF determines the probability that a random pair of peptides (out of all possible peptides within parent mass tolerance) will match a given mixture spectrum with a score at least as high as that of the top-scoring PPSM.Despite the theoretical attractiveness of computing statistical significance, it is generally prohibitive for any database search methods to score all possible peptides against a spectrum. Therefore, earlier works in this direction focus on approximating this probability by assuming the score distribution of all PSMs follows certain analytical form such as the normal, Poisson or hypergeometric distributions (29, 30, 31). In practice, because score distributions are highly data-dependent and spectrum-specific, these model assumptions do not always hold. Other approaches tried to learn the score distribution empirically from the data (29, 27). However, one is most interested in the region of the score distribution where only a small fraction of false positives are allowed (typically at 1% FDR). This usually corresponds to the extreme tail of the distribution where p values are on the order of 10−9 or lower and thus there is typically lack of sufficient data points to accurately model the tail of the score distribution (32). More recently, Kim et al. (24) and Alves et al. (33), in parallel, proposed a generating function approach to compute the exact score distribution of random peptide matches for any spectra without explicitly matching all peptides to a spectrum. Because it is an exact computation, no assumption is made about the form of score distribution and the tail of the distribution can be computed very accurately. As a result, this approach substantially improved the ability to separate true matches from false positive ones and lead to a significant increase in sensitivity of peptide identification over state-of-the-art database search tools in single-peptide spectra (24).For mixture spectra, it is expected that the scores for the top-scoring match will be even less comparable across different spectra because now more than one peptide and different numbers of peptides can be matched to each spectrum at the same time. We extend the generating function approach (24) to rigorously compute the statistical significance of multiple-Peptide-Spectrum Matches (mPSMs) and demonstrate its utility toward addressing the peptide identification problem in mixture spectra. In particular, we show how to extend the generating approach for mixture from two peptides. We focus on this relatively simple case of mixture spectra because it accounts for a large fraction of mixture spectra presented in traditional DDA workflows (5). This allows us to test and develop algorithmic concepts using readily-available DDA data because data with more complex mixture spectra such as those from DIA workflows (11) is still not widely available in public repositories.  相似文献   

6.
7.
8.
A complete understanding of the biological functions of large signaling peptides (>4 kDa) requires comprehensive characterization of their amino acid sequences and post-translational modifications, which presents significant analytical challenges. In the past decade, there has been great success with mass spectrometry-based de novo sequencing of small neuropeptides. However, these approaches are less applicable to larger neuropeptides because of the inefficient fragmentation of peptides larger than 4 kDa and their lower endogenous abundance. The conventional proteomics approach focuses on large-scale determination of protein identities via database searching, lacking the ability for in-depth elucidation of individual amino acid residues. Here, we present a multifaceted MS approach for identification and characterization of large crustacean hyperglycemic hormone (CHH)-family neuropeptides, a class of peptide hormones that play central roles in the regulation of many important physiological processes of crustaceans. Six crustacean CHH-family neuropeptides (8–9.5 kDa), including two novel peptides with extensive disulfide linkages and PTMs, were fully sequenced without reference to genomic databases. High-definition de novo sequencing was achieved by a combination of bottom-up, off-line top-down, and on-line top-down tandem MS methods. Statistical evaluation indicated that these methods provided complementary information for sequence interpretation and increased the local identification confidence of each amino acid. Further investigations by MALDI imaging MS mapped the spatial distribution and colocalization patterns of various CHH-family neuropeptides in the neuroendocrine organs, revealing that two CHH-subfamilies are involved in distinct signaling pathways.Neuropeptides and hormones comprise a diverse class of signaling molecules involved in numerous essential physiological processes, including analgesia, reward, food intake, learning and memory (1). Disorders of the neurosecretory and neuroendocrine systems influence many pathological processes. For example, obesity results from failure of energy homeostasis in association with endocrine alterations (2, 3). Previous work from our lab used crustaceans as model organisms found that multiple neuropeptides were implicated in control of food intake, including RFamides, tachykinin related peptides, RYamides, and pyrokinins (46).Crustacean hyperglycemic hormone (CHH)1 family neuropeptides play a central role in energy homeostasis of crustaceans (717). Hyperglycemic response of the CHHs was first reported after injection of crude eyestalk extract in crustaceans. Based on their preprohormone organization, the CHH family can be grouped into two sub-families: subfamily-I containing CHH, and subfamily-II containing molt-inhibiting hormone (MIH) and mandibular organ-inhibiting hormone (MOIH). The preprohormones of the subfamily-I have a CHH precursor related peptide (CPRP) that is cleaved off during processing; and preprohormones of the subfamily-II lack the CPRP (9). Uncovering their physiological functions will provide new insights into neuroendocrine regulation of energy homeostasis.Characterization of CHH-family neuropeptides is challenging. They are comprised of more than 70 amino acids and often contain multiple post-translational modifications (PTMs) and complex disulfide bridge connections (7). In addition, physiological concentrations of these peptide hormones are typically below picomolar level, and most crustacean species do not have available genome and proteome databases to assist MS-based sequencing.MS-based neuropeptidomics provides a powerful tool for rapid discovery and analysis of a large number of endogenous peptides from the brain and the central nervous system. Our group and others have greatly expanded the peptidomes of many model organisms (3, 1833). For example, we have discovered more than 200 neuropeptides with several neuropeptide families consisting of as many as 20–40 members in a simple crustacean model system (5, 6, 2531, 34). However, a majority of these neuropeptides are small peptides with 5–15 amino acid residues long, leaving a gap of identifying larger signaling peptides from organisms without sequenced genome. The observed lack of larger size peptide hormones can be attributed to the lack of effective de novo sequencing strategies for neuropeptides larger than 4 kDa, which are inherently more difficult to fragment using conventional techniques (3437). Although classical proteomics studies examine larger proteins, these tools are limited to identification based on database searching with one or more peptides matching without complete amino acid sequence coverage (36, 38).Large populations of neuropeptides from 4–10 kDa exist in the nervous systems of both vertebrates and invertebrates (9, 39, 40). Understanding their functional roles requires sufficient molecular knowledge and a unique analytical approach. Therefore, developing effective and reliable methods for de novo sequencing of large neuropeptides at the individual amino acid residue level is an urgent gap to fill in neurobiology. In this study, we present a multifaceted MS strategy aimed at high-definition de novo sequencing and comprehensive characterization of the CHH-family neuropeptides in crustacean central nervous system. The high-definition de novo sequencing was achieved by a combination of three methods: (1) enzymatic digestion and LC-tandem mass spectrometry (MS/MS) bottom-up analysis to generate detailed sequences of proteolytic peptides; (2) off-line LC fractionation and subsequent top-down MS/MS to obtain high-quality fragmentation maps of intact peptides; and (3) on-line LC coupled to top-down MS/MS to allow rapid sequence analysis of low abundance peptides. Combining the three methods overcomes the limitations of each, and thus offers complementary and high-confidence determination of amino acid residues. We report the complete sequence analysis of six CHH-family neuropeptides including the discovery of two novel peptides. With the accurate molecular information, MALDI imaging and ion mobility MS were conducted for the first time to explore their anatomical distribution and biochemical properties.  相似文献   

9.
10.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

11.
12.
13.
The analysis and management of MS data, especially those generated by data independent MS acquisition, exemplified by SWATH-MS, pose significant challenges for proteomics bioinformatics. The large size and vast amount of information inherent to these data sets need to be properly structured to enable an efficient and straightforward extraction of the signals used to identify specific target peptides. Standard XML based formats are not well suited to large MS data files, for example, those generated by SWATH-MS, and compromise high-throughput data processing and storing.We developed mzDB, an efficient file format for large MS data sets. It relies on the SQLite software library and consists of a standardized and portable server-less single-file database. An optimized 3D indexing approach is adopted, where the LC-MS coordinates (retention time and m/z), along with the precursor m/z for SWATH-MS data, are used to query the database for data extraction.In comparison with XML formats, mzDB saves ∼25% of storage space and improves access times by a factor of twofold up to even 2000-fold, depending on the particular data access. Similarly, mzDB shows also slightly to significantly lower access times in comparison with other formats like mz5. Both C++ and Java implementations, converting raw or XML formats to mzDB and providing access methods, will be released under permissive license. mzDB can be easily accessed by the SQLite C library and its drivers for all major languages, and browsed with existing dedicated GUIs. The mzDB described here can boost existing mass spectrometry data analysis pipelines, offering unprecedented performance in terms of efficiency, portability, compactness, and flexibility.The continuous improvement of mass spectrometers (14) and HPLC systems (510) and the rapidly increasing volumes of data they produce pose a real challenge to software developers who constantly have to adapt their tools to deal with different types and increasing sizes of raw files. Indeed, the file size of a single MS analysis evolved from a few MB to several GB in less than 10 years. The introduction of high throughput, high mass accuracy MS analyses in data dependent acquisitions (DDA)1 and the adoption of Data Independent Acquisition (DIA) approaches, for example, SWATH-MS (11), were significant factors in this development. The management of these huge data files is a major issue for laboratories and raw file public repositories, which need to regularly upgrade their storage solutions and capacity.The availability of XML (eXtensible Markup Language) standard formats (12, 13) enhanced data exchange among laboratories. However, XMLs causes the inflation of raw file size by a factor of two to three times compared with their original size. Vendor files, although lighter, are proprietary formats, often not compatible with operating systems other than Microsoft Windows. They do not generally interface with many open source software tools, and do not offer a viable solution for data exchange. In addition to size inflation, other disadvantages associated with the use of XML for the representation of raw data have been previously described in the literature (1417). These include the verbosity of language syntax, the lack of support for multidimensional chromatographic analyses, and the low performance showed during data processing. Although XML standards were originally conceived as a format for enabling data sharing in the community, they are commonly used as the input for MS data analysis. Latest software tools (18, 19) are usually only compatible with mzML files, limiting de facto the throughput of proteomic analyses.To tackle these issues, some independent laboratories developed open formats relying on binary specifications (14, 17, 20, 21), to optimize both file size and data processing performance. Similar efforts started already more than ten years ago, and, among the others, the NetCDF version 4, first described in 2004, added the support for a new data model called HDF5. Because it is particularly well suited to the representation of complex data, HDF5 was used in several scientific projects to store and efficiently access large volumes of bytes, as for the mz5 format (17). Compared with XML based formats, mz5 is much more efficient in terms of file size, memory footprint, and access time. Thus, after replacing the JCAMP text format more than 10 years ago, netCDF is nowadays a suitable alternative to XML based formats. Nonetheless, solutions for storing and indexing large amounts of data in a binary file are not limited to netCDF. For instance, it has been demonstrated that a relational model can represent raw data, as in YAFMS format (14), which is based on SQLite, a technology that allows implementing a portable, self-contained, single file database. Similarly to mz5, YAFMS is definitely more efficient in terms of file size and access times than XML.Despite their improvements, a limitation of these new binary formats relies on the lack of a multi-indexing model to represent the bi-dimensional structure of LC-MS data. The inherently 2D indexing of LC-MS data can indeed be very useful when working with LC-MS/MS acquisition files. At the state-of-the-art, three main raw data access strategies can be identified across DDA and DIA approaches:
  • (1) Sequential reading of whole m/z spectra, for a systematic processing of the entire raw file. Use cases: file format conversion, peak picking, analysis of MS/MS spectra, and MS/MS peak list generation.
  • (2) Systematic processing of the data contained in specific m/z windows, across the entire chromatographic gradient. Use cases: extraction of XICs on the whole chromatographic gradient and MS features detection.
  • (3) Random access to a small region of the LC-MS map (a few spectra or an m/z window of consecutive spectra). Use cases: data visualization, targeted extraction of XICs on a small time range, and targeted extraction of a subset of spectra.
The adoption of a certain data access strategy depends upon the particular data analysis algorithms, which can perform signal extraction mainly by unsupervised or supervised approaches. Unsupervised approaches (18, 2225) recognize LC-MS features on the basis of patterns like the theoretical isotope distribution, the shape of the elution peaks, etc. Conversely, supervised approaches (2933) implement the peak picking as driven data access, using the a priori knowledge on peptide coordinates (m/z, retention time, and m/z precursor for DIA), which are provided by appropriate extraction lists given by the identification search engine or the transition lists in targeted proteomics (34). Data access overhead can vary significantly, according to the specific algorithm, data size, and length of the extraction list. In the unsupervised approach, feature detection is based first on the analysis of the full set of MS spectra and then on the grouping of the peaks detected in adjacent MS scans; thus, optimized sequential spectra access is required. In the supervised approach, peptide XICs are extracted using their a priori coordinates and therefore sequential spectra access is not a suitable solution; for instance, MS spectra shared by different peptides would be loaded multiple times leading to highly redundant data reloading. Even though sophisticated caching mechanisms can reduce the impact of this issue, they would increase memory consumption. It is thus preferable to perform a targeted access to specific MS spectra by leveraging an index in the time dimension. However, it would still be a sub-optimal solution because of redundant loads of full MS spectra, whereas only a small spectral window centered on the peptide m/z is of interest. Thus the quantification of dozens of thousands of peptides (32, 33) requires appropriate data access methods to cope with the repetitive and high load of MS data.We therefore deem that an ideal file format should show comparable efficiency regardless of the particular use case. In order to achieve this important flexibility and efficiency on any data access, we developed a new solution featuring multiple indexing strategies: the mzDB format (i.e. m/z database). As the YAFMS format, mzDB is implemented using SQLite, which is commonly adopted in several computational projects and is compatible with most programming languages. In contrast to mz5 and YAFMS formats, where each spectrum is referred by a single index entry, mzDB has an internal data structure allowing a multidimensional data indexing, and thus results in efficient queries along both time and m/z dimensions. This makes mzDB specifically suited to the processing of large-scale LC-MS/MS data. In particular, the multidimensional data-indexing model was extended for SWATH-MS data, where a third index is given by the m/z of the precursor ion, in addition to the RT and m/z of the fragment ions.In order to show its efficiency for all described data access strategies, mzDB was compared with the mzML format, which is the official XML standard, and the latest mz5 binary format, which has already been compared with many existing file formats (17). Results show that mzDB outperforms other formats on most comparisons, except in sequential reading benchmarks where mz5 and mzDB are comparable. mzDB access performance, portability, and compactness, as well as its compliance to the PSI controlled vocabulary make it complementary to existing solutions for both the storage and exchange of mass spectrometry data and will eventually address the issues related to data access overhead during their processing. mzDB can therefore enhance existing mass spectrometry data analysis pipelines, offering unprecedented performance and therefore possibilities.  相似文献   

14.
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, remains one of the most prevalent human pathogens and a major cause of mortality worldwide. Metabolic network is a central mediator and defining feature of the pathogenicity of Mtb. Increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells; however, its extent and function in Mtb remain unexplored. Here, we performed a global succinylome analysis of the virulent Mtb strain H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and a large proportion of the succinylation sites are present on proteins in the central metabolism pathway. Site-specific mutations showed that succinylation is a negative regulatory modification on the enzymatic activity of acetyl-CoA synthetase. Molecular dynamics simulations demonstrated that succinylation affects the conformational stability of acetyl-CoA synthetase, which is critical for its enzymatic activity. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a desuccinylase of acetyl-CoA synthetase in in vitro assays. Together, our findings reveal widespread roles for lysine succinylation in regulating metabolism and diverse processes in Mtb. Our data provide a rich resource for functional analyses of lysine succinylation and facilitate the dissection of metabolic networks in this life-threatening pathogen.Post-translational modifications (PTMs)1 are complex and fundamental mechanisms modulating diverse protein properties and functions, and have been associated with almost all known cellular pathways and disease processes (1, 2). Among the hundreds of different PTMs, acylations at lysine residues, such as acetylation (36), malonylation (7, 8), crotonylation (9, 10), propionylation (1113), butyrylation (11, 13), and succinylation (7, 1416) are crucial for functional regulations of many prokaryotic and eukaryotic proteins. Because these lysine PTMs depend on the acyl-CoA metabolic intermediates, such as acetyl-CoA (Ac-CoA), succinyl-CoA, and malonyl-CoA, lysine acylation could provide a mechanism to respond to changes in the energy status of the cell and regulate energy metabolism and the key metabolic pathways in diverse organisms (17, 18).Among these lysine PTMs, lysine succinylation is a highly dynamic and regulated PTM defined as transfer of a succinyl group (-CO-CH2-CH2-CO-) to a lysine residue of a protein molecule (8). It was recently identified and comprehensively validated in both bacterial and mammalian cells (8, 14, 16). It was also identified in core histones, suggesting that lysine succinylation may regulate the functions of histones and affect chromatin structure and gene expression (7). Accumulating evidence suggests that lysine succinylation is a widespread and important PTM in both eukaryotes and prokaryotes and regulates diverse cellular processes (16). The system-wide studies involving lysine-succinylated peptide immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS/MS) have been employed to analyze the bacteria (E. coli) (14, 16), yeast (S. cerevisiae), human (HeLa) cells, and mouse embryonic fibroblasts and liver cells (16, 19). These succinylome studies have generated large data sets of lysine-succinylated proteins in both eukaryotes and prokaryotes and demonstrated the diverse cellular functions of this PTM. Notably, lysine succinylation is widespread among diverse mitochondrial metabolic enzymes that are involved in fatty acid metabolism, amino acid degradation, and the tricarboxylic acid cycle (19, 20). Thus, lysine succinylation is reported as a functional PTM with the potential to impact mitochondrial metabolism and coordinate different metabolic pathways in human cells and bacteria (14, 1922).Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a major cause of mortality worldwide and claims more human lives annually than any other bacterial pathogen (23). About one third of the world''s population is infected with Mtb, which leads to nearly 1.3 million deaths and 8.6 million new cases of TB in 2012 worldwide (24). Mtb remains a major threat to global health, especially in the developing countries. Emergence of multidrug resistant (MDR) and extensively drug-resistant (XDR) Mtb, and also the emergence of co-infection between TB and HIV have further worsened the situation (2527). Among bacterial pathogens, Mtb has a distinctive life cycle spanning different environments and developmental stages (28). Especially, Mtb can exist in dormant or active states in the host, leading to asymptomatic latent TB infection or active TB disease (29). To achieve these different physiologic states, Mtb developed a mechanism to sense diverse signals from the host and to coordinately regulate multiple cellular processes and pathways (30, 31). Mtb has evolved its metabolic network to both maintain and propagate its survival as a species within humans (3235). It is well accepted that metabolic network is a central mediator and defining feature of the pathogenicity of Mtb (23, 3638). Knowledge of the regulation of metabolic pathways used by Mtb during infection is therefore important for understanding its pathogenicity, and can also guide the development of novel drug therapies (39). On the other hand, increasing evidence suggests that lysine succinylation dynamically regulates enzymes in carbon metabolism in both bacteria and human cells (14, 1922). It is tempting to speculate that lysine succinylation may play an important regulatory role in metabolic processes in Mtb. However, to the best of our knowledge, no succinylated protein in Mtb has been identified, presenting a major obstacle to understand the regulatory roles of lysine succinylation in this life-threatening pathogen.In order to fill this gap in our knowledge, we have initiated a systematic study of the identities and functional roles of the succinylated protein in Mtb. Because Mtb H37Rv is the first sequenced Mtb strain (40) and has been extensively used for studies in dissecting the roles of individual genes in pathogenesis (41), it was selected as a test case. We analyzed the succinylome of Mtb H37Rv by using high accuracy nano-LC-MS/MS in combination with the enrichment of succinylated peptides from digested cell lysates and subsequent peptide identification. In total, 1545 lysine succinylation sites on 626 proteins were identified in this pathogen. The identified succinylated proteins are involved in various biological processes and render particular enrichment to metabolic process. A large proportion of the succinylation sites are present on proteins in the central metabolism pathway. We further dissected the regulatory role of succinylation on acetyl-CoA synthetase (Acs) via site-specific mutagenesis analysis and molecular dynamics (MD) simulations showed that reversible lysine succinylation could inhibit the activity of Acs. Further functional studies showed that CobB, a sirtuin-like deacetylase in Mtb, functions as a deacetylase and as a desuccinylase of Acs in in vitro assays. Together, our findings provide significant insights into the range of functions regulated by lysine succinylation in Mtb.  相似文献   

15.
A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

16.
17.
Database search programs are essential tools for identifying peptides via mass spectrometry (MS) in shotgun proteomics. Simultaneously achieving high sensitivity and high specificity during a database search is crucial for improving proteome coverage. Here we present JUMP, a new hybrid database search program that generates amino acid tags and ranks peptide spectrum matches (PSMs) by an integrated score from the tags and pattern matching. In a typical run of liquid chromatography coupled with high-resolution tandem MS, more than 95% of MS/MS spectra can generate at least one tag, whereas the remaining spectra are usually too poor to derive genuine PSMs. To enhance search sensitivity, the JUMP program enables the use of tags as short as one amino acid. Using a target-decoy strategy, we compared JUMP with other programs (e.g. SEQUEST, Mascot, PEAKS DB, and InsPecT) in the analysis of multiple datasets and found that JUMP outperformed these preexisting programs. JUMP also permitted the analysis of multiple co-fragmented peptides from “mixture spectra” to further increase PSMs. In addition, JUMP-derived tags allowed partial de novo sequencing and facilitated the unambiguous assignment of modified residues. In summary, JUMP is an effective database search algorithm complementary to current search programs.Peptide identification by tandem mass spectra is a critical step in mass spectrometry (MS)-based1 proteomics (1). Numerous computational algorithms and software tools have been developed for this purpose (26). These algorithms can be classified into three categories: (i) pattern-based database search, (ii) de novo sequencing, and (iii) hybrid search that combines database search and de novo sequencing. With the continuous development of high-performance liquid chromatography and high-resolution mass spectrometers, it is now possible to analyze almost all protein components in mammalian cells (7). In contrast to rapid data collection, it remains a challenge to extract accurate information from the raw data to identify peptides with low false positive rates (specificity) and minimal false negatives (sensitivity) (8).Database search methods usually assign peptide sequences by comparing MS/MS spectra to theoretical peptide spectra predicted from a protein database, as exemplified in SEQUEST (9), Mascot (10), OMSSA (11), X!Tandem (12), Spectrum Mill (13), ProteinProspector (14), MyriMatch (15), Crux (16), MS-GFDB (17), Andromeda (18), BaMS2 (19), and Morpheus (20). Some other programs, such as SpectraST (21) and Pepitome (22), utilize a spectral library composed of experimentally identified and validated MS/MS spectra. These methods use a variety of scoring algorithms to rank potential peptide spectrum matches (PSMs) and select the top hit as a putative PSM. However, not all PSMs are correctly assigned. For example, false peptides may be assigned to MS/MS spectra with numerous noisy peaks and poor fragmentation patterns. If the samples contain unknown protein modifications, mutations, and contaminants, the related MS/MS spectra also result in false positives, as their corresponding peptides are not in the database. Other false positives may be generated simply by random matches. Therefore, it is of importance to remove these false PSMs to improve dataset quality. One common approach is to filter putative PSMs to achieve a final list with a predefined false discovery rate (FDR) via a target-decoy strategy, in which decoy proteins are merged with target proteins in the same database for estimating false PSMs (2326). However, the true and false PSMs are not always distinguishable based on matching scores. It is a problem to set up an appropriate score threshold to achieve maximal sensitivity and high specificity (13, 27, 28).De novo methods, including Lutefisk (29), PEAKS (30), NovoHMM (31), PepNovo (32), pNovo (33), Vonovo (34), and UniNovo (35), identify peptide sequences directly from MS/MS spectra. These methods can be used to derive novel peptides and post-translational modifications without a database, which is useful, especially when the related genome is not sequenced. High-resolution MS/MS spectra greatly facilitate the generation of peptide sequences in these de novo methods. However, because MS/MS fragmentation cannot always produce all predicted product ions, only a portion of collected MS/MS spectra have sufficient quality to extract partial or full peptide sequences, leading to lower sensitivity than achieved with the database search methods.To improve the sensitivity of the de novo methods, a hybrid approach has been proposed to integrate peptide sequence tags into PSM scoring during database searches (36). Numerous software packages have been developed, such as GutenTag (37), InsPecT (38), Byonic (39), DirecTag (40), and PEAKS DB (41). These methods use peptide tag sequences to filter a protein database, followed by error-tolerant database searching. One restriction in most of these algorithms is the requirement of a minimum tag length of three amino acids for matching protein sequences in the database. This restriction reduces the sensitivity of the database search, because it filters out some high-quality spectra in which consecutive tags cannot be generated.In this paper, we describe JUMP, a novel tag-based hybrid algorithm for peptide identification. The program is optimized to balance sensitivity and specificity during tag derivation and MS/MS pattern matching. JUMP can use all potential sequence tags, including tags consisting of only one amino acid. When we compared its performance to that of two widely used search algorithms, SEQUEST and Mascot, JUMP identified ∼30% more PSMs at the same FDR threshold. In addition, the program provides two additional features: (i) using tag sequences to improve modification site assignment, and (ii) analyzing co-fragmented peptides from mixture MS/MS spectra.  相似文献   

18.
Protein–protein interactions (PPIs) are fundamental to the structure and function of protein complexes. Resolving the physical contacts between proteins as they occur in cells is critical to uncovering the molecular details underlying various cellular activities. To advance the study of PPIs in living cells, we have developed a new in vivo cross-linking mass spectrometry platform that couples a novel membrane-permeable, enrichable, and MS-cleavable cross-linker with multistage tandem mass spectrometry. This strategy permits the effective capture, enrichment, and identification of in vivo cross-linked products from mammalian cells and thus enables the determination of protein interaction interfaces. The utility of the developed method has been demonstrated by profiling PPIs in mammalian cells at the proteome scale and the targeted protein complex level. Our work represents a general approach for studying in vivo PPIs and provides a solid foundation for future studies toward the complete mapping of PPI networks in living systems.Protein–protein interactions (PPIs)1 play a key role in defining protein functions in biological systems. Aberrant PPIs can have drastic effects on biochemical activities essential to cell homeostasis, growth, and proliferation, and thereby lead to various human diseases (1). Consequently, PPI interfaces have been recognized as a new paradigm for drug development. Therefore, mapping PPIs and their interaction interfaces in living cells is critical not only for a comprehensive understanding of protein function and regulation, but also for describing the molecular mechanisms underlying human pathologies and identifying potential targets for better therapeutics.Several strategies exist for identifying and mapping PPIs, including yeast two-hybrid, protein microarray, and affinity purification mass spectrometry (AP-MS) (25). Thanks to new developments in sample preparation strategies, mass spectrometry technologies, and bioinformatics tools, AP-MS has become a powerful and preferred method for studying PPIs at the systems level (69). Unlike other approaches, AP-MS experiments allow the capture of protein interactions directly from their natural cellular environment, thus better retaining native protein structures and biologically relevant interactions. In addition, a broader scope of PPI networks can be obtained with greater sensitivity, accuracy, versatility, and speed. Despite the success of this very promising technique, AP-MS experiments can lead to the loss of weak/transient interactions and/or the reorganization of protein interactions during biochemical manipulation under native purification conditions. To circumvent these problems, in vivo chemical cross-linking has been successfully employed to stabilize protein interactions in native cells or tissues prior to cell lysis (1016). The resulting covalent bonds formed between interacting partners allow affinity purification under stringent and fully denaturing conditions, consequently reducing nonspecific background while preserving stable and weak/transient interactions (1216). Subsequent mass spectrometric analysis can reveal not only the identities of interacting proteins, but also cross-linked amino acid residues. The latter provides direct molecular evidence describing the physical contacts between and within proteins (17). This information can be used for computational modeling to establish structural topologies of proteins and protein complexes (1722), as well as for generating experimentally derived protein interaction network topology maps (23, 24). Thus, cross-linking mass spectrometry (XL-MS) strategies represent a powerful and emergent technology that possesses unparalleled capabilities for studying PPIs.Despite their great potential, current XL-MS studies that have aimed to identify cross-linked peptides have been mostly limited to in vitro cross-linking experiments, with few successfully identifying protein interaction interfaces in living cells (24, 25). This is largely because XL-MS studies remain challenging due to the inherent difficulty in the effective MS detection and accurate identification of cross-linked peptides, as well as in unambiguous assignment of cross-linked residues. In general, cross-linked products are heterogeneous and low in abundance relative to non-cross-linked products. In addition, their MS fragmentation is too complex to be interpreted using conventional database searching tools (17, 26). It is noted that almost all of the current in vivo PPI studies utilize formaldehyde cross-linking because of its membrane permeability and fast kinetics (1016). However, in comparison to the most commonly used amine reactive NHS ester cross-linkers, identification of formaldehyde cross-linked peptides is even more challenging because of its promiscuous nonspecific reactivity and extremely short spacer length (27). Therefore, further developments in reagents and methods are urgently needed to enable simple MS detection and effective identification of in vivo cross-linked products, and thus allow the mapping of authentic protein contact sites as established in cells, especially for protein complexes.Various efforts have been made to address the limitations of XL-MS studies, resulting in new developments in bioinformatics tools for improved data interpretation (2832) and new designs of cross-linking reagents for enhanced MS analysis of cross-linked peptides (24, 3339). Among these approaches, the development of new cross-linking reagents holds great promise for mapping PPIs on the systems level. One class of cross-linking reagents containing an enrichment handle have been shown to allow selective isolation of cross-linked products from complex mixtures, boosting their detectability by MS (3335, 4042). A second class of cross-linkers containing MS-cleavable bonds have proven to be effective in facilitating the unambiguous identification of cross-linked peptides (3639, 43, 44), as the resulting cross-linked products can be identified based on their characteristic and simplified fragmentation behavior during MS analysis. Therefore, an ideal cross-linking reagent would possess the combined features of both classes of cross-linkers. To advance the study of in vivo PPIs, we have developed a new XL-MS platform based on a novel membrane-permeable, enrichable, and MS-cleavable cross-linker, Azide-A-DSBSO (azide-tagged, acid-cleavable disuccinimidyl bis-sulfoxide), and multistage tandem mass spectrometry (MSn). This new XL-MS strategy has been successfully employed to map in vivo PPIs from mammalian cells at both the proteome scale and the targeted protein complex level.  相似文献   

19.
Mitochondria play a central role in energy metabolism and cellular survival, and consequently mitochondrial dysfunction is associated with a number of human pathologies. Reversible protein phosphorylation emerges as a central mechanism in the regulation of several mitochondrial processes. In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomics study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins. Combining an efficient mitochondrial isolation protocol with several different phosphopeptide enrichment techniques and LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, including 116 phosphoserine, 23 phosphothreonine, and 16 phosphotyrosine residues. The relatively high number of phosphotyrosine residues suggests an important role for tyrosine phosphorylation in mitochondrial signaling. Many of the mitochondrial phosphoproteins are involved in oxidative phosphorylation, tricarboxylic acid cycle, and lipid metabolism, i.e. processes proposed to be involved in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates for protein kinase A, protein kinase C, casein kinase II, and DNA-dependent protein kinase. Our results demonstrate the feasibility of performing phosphoproteome analysis of organelles isolated from human tissue and provide novel targets for functional studies of reversible phosphorylation in mitochondria. Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes.Mitochondria are the primary energy-generating systems in eukaryotes. They play a crucial role in oxidative metabolism, including carbohydrate metabolism, fatty acid oxidation, and urea cycle, as well as in calcium signaling and apoptosis (1, 2). Mitochondrial dysfunction is centrally involved in a number of human pathologies, such as type 2 diabetes, Parkinson disease, and cancer (3). The most prevalent form of cellular protein post-translational modifications (PTMs),1 reversible phosphorylation (46), is emerging as a central mechanism in the regulation of mitochondrial functions (7, 8). The steadily increasing numbers of reported mitochondrial kinases, phosphatases, and phosphoproteins imply an important role of protein phosphorylation in different mitochondrial processes (911).Mass spectrometry (MS)-based proteome analysis is a powerful tool for global profiling of proteins and their PTMs, including protein phosphorylation (12, 13). A variety of proteomics techniques have been developed for specific enrichment of phosphorylated proteins and peptides and for phosphopeptide-specific data acquisition techniques at the MS level (14). Enrichment methods based on affinity chromatography, such as titanium dioxide (TiO2) (1517), zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) (18), immobilized metal affinity chromatography (IMAC) (19, 20), and ion exchange chromatography (strong anion exchange and strong cation exchange) (21, 22), have shown high efficiencies for enrichment of phosphopeptides (14). Recently, we demonstrated that calcium phosphate precipitation (CPP) is highly effective for enriching phosphopeptides (23). It is now generally accepted that no single method is comprehensive, but combinations of different enrichment methods produce distinct overlapping phosphopeptide data sets to enhance the overall results in phosphoproteome analysis (24, 25). Phosphopeptide sequencing by mass spectrometry has seen tremendous advances during the last decade (26). For example, MS/MS product ion scanning, multistage activation, and precursor ion scanning are effective methods for identifying serine (Ser), threonine (Thr), and tyrosine (Tyr) phosphorylated peptides (14, 26).A “complete” mammalian mitochondrial proteome was reported by Mootha and co-workers (27) and included 1098 proteins. The mitochondrial phosphoproteome has been characterized in a series of studies, including yeast, mouse and rat liver, porcine heart, and plants (19, 2831). To date, the largest data set by Deng et al. (30) identified 228 different phosphoproteins and 447 phosphorylation sites in rat liver mitochondria. However, the in vivo phosphoproteome of human mitochondria has not been determined. A comprehensive mitochondrial phosphoproteome is warranted for further elucidation of the largely unknown mechanisms by which protein phosphorylation modulates diverse mitochondrial functions.The percutaneous muscle biopsy technique is an important tool in the diagnosis and management of human muscle disorders and has been widely used to investigate metabolism and various cellular and molecular processes in normal and abnormal human muscle, in particular the molecular mechanism underlying insulin resistance in obesity and type 2 diabetes (32). Skeletal muscle is rich in mitochondria and hence a good source for a comprehensive proteomics and functional analysis of mitochondria (32, 33).The major aim of the present study was to obtain a comprehensive overview of site-specific phosphorylation of mitochondrial proteins in functionally intact mitochondria isolated from human skeletal muscle. Combining an efficient protocol for isolation of skeletal muscle mitochondria with several different state-of-the-art phosphopeptide enrichment methods and high performance LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, many of which have not been reported before. We characterized this mitochondrial phosphoproteome by using bioinformatics tools to classify functional groups and functions, including kinase substrate motifs.  相似文献   

20.
Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post-translational modifications (PTMs) is still limited.Here, we present a detailed PTM1 characterization of a series of the main and clinically relevant allergens used in allergy tests and vaccines. We employ Orbitrap-based mass spectrometry with complementary fragmentation techniques (HCD/ETD) for site-specific PTM characterization by bottom-up analysis. In addition, top-down mass spectrometry is utilized for targeted analysis of individual proteins, revealing hitherto unknown PTMs of HDM allergens. We demonstrate the presence of lysine-linked polyhexose glycans and asparagine-linked N-acetylhexosamine glycans on HDM allergens. Moreover, we identified more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens, implicating important roles for carbohydrates in allergen recognition and response by the immune system. The new findings are important for understanding basic disease-causing mechanisms at the cellular level, which ultimately may pave the way for instigating novel approaches for targeted desensitization strategies and improved allergy vaccines.Allergic respiratory disease is a global health problem and current clinical guidelines recommend a combination of allergen avoidance, pharmacotherapy, and allergen specific immunotherapy for treatment (14). At present allergy testing and vaccines are based on isolated crude antigen preparations from natural sources (i.e. HDM, pollens, etc.), but a move toward recombinant allergen design is ongoing (5, 6). This could have important functional implications because the production host will determine the repertoire of post-translational modifications (PTMs) and in particular glycan modifications presented on allergens.The carbohydrate structures found on allergens are in most cases not found in mammals and therefore frequently lead to the induction IgE antibodies named Cross-reactive Carbohydrate Determinants (CCD) (711). Moreover, glycans may directly be involved in and promote uptake and target allergens to carbohydrate lectin receptors on antigen presenting cells (APC) (1214). Therefore, a full structural characterization of the glycans on the natural allergens is a prerequisite for understanding both antibody reactivity and lectin receptor mediated allergen recognition and modulation of the immune response (15, 16). Furthermore, a detailed characterization of PTMs of allergens is important for standardization of allergen products for diagnostic purposes as well as for vaccine use (17, 18). Although many major allergens and their etiology have been characterized in some detail, structural information on for example their immunological important PTM status is still incomplete (1921).Mass spectrometry-based technologies offer sensitive and accurate analyses for identification and characterization of proteins. The common proteomics workflow typically adopts the bottom-up approach, i.e. in vitro proteolytic digestion of proteins followed by nanoflow-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) for protein identification and PTM characterization. Electron- or collision-driven fragmentation techniques, e.g. electron transfer dissociation (ETD) (22) or higher energy collisional dissociation (HCD) (23) have enabled accurate identification of peptides of purified proteins, e.g. allergens (21, 24), or complex biological samples (2527) with concurrent characterization of their PTMs. One advantage of bottom-up mass spectrometry is the ability to resolve modified peptides within a narrow chromatographic time frame thereby enabling in-depth characterization of site-specific features, e.g. glycoforms, on peptides. This peptide-level information is subsequently used to generate a protein-level view on the PTM status for a given protein. Importantly, the PTM connectivity of the protein (28) is lost upon proteolytic digestion, and alternative approaches are often required for comprehensive characterization of all proteoforms (29). Top-down mass spectrometry has emerged as an alternative approach to bottom-up proteomics, offering complementary MS and MS/MS information that may be used for protein identification and characterization (30, 31). With top-down MS, intact proteins are typically analyzed by high-resolution FTMS and characterized at the MS/MS level by CID, HCD, ECD, or ETD. This technique provides instant protein-level information on analytes, e.g. sequence variants, amino acid substitutions, PTMs, etc., which can be verified at the MS/MS level by different fragmentation modes. The combination of bottom-up and top-down mass spectrometry is therefore a powerful tool for the identification and characterization of proteins. Here, we combine top-down and bottom-up mass spectrometry for comprehensive characterization of seven major allergens as a first step toward unraveling the molecular mode of action of allergens with complex PTMs. By these methods, we demonstrate hitherto unknown PTMs of HDM allergens and identify more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens. The new findings implicate important roles for carbohydrates in allergen recognition and response by the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号