首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate reductase activity is usually measured by colorimetric determination of the nitrite formed. Since reduced pyridine nucleotides interfere with color formation, the use of NADPH or NADH in the assay requires a specific postassay treatment to remove excess substrate. A "stop mix" containing 1.5 mM phenazine methosulfate and 4.0 mM ferricyanide (final concentrations 0.136 and 0.36 mM, respectively) can remove excess NAD(P)H and terminate the enzymatic reaction quickly in a single, time-saving step. For activity tests containing dithionite we recommend the use of a 1:1 mixture of the two color reagents to avoid incomplete color formation. This may occur during longer time intervals between addition of the color reagents due to destruction of the diazonium salt formed with the first reagent by oxidation product(s) of dithionite.  相似文献   

2.
1. The assimilatory nitrite reductase of the N(2)-fixing bacterium Azotobacter chroococcum was prepared in a soluble form from cells grown aerobically with nitrate as the nitrogen source, and some of its properties have been studied. 2. The enzyme is a FAD-dependent metalloprotein (mol.wt. about 67000), which stoicheiometrically catalyses the direct reduction of nitrite to NH(3) with NADH as the electron donor. 3. NADH-nitrite reductase can exist in two either active or inactive interconvertible forms. Inactivation in vitro can be achieved by preincubation with NADH. Nitrite can specifically protect the enzyme against this inactivation and reverse the process once it has occurred. 4. A. chroococcum nitrite reductase is an adaptive enzyme whose formation depends on the presence of either nitrate or nitrite in the nutrient solution. 5. Tungstate inhibits growth of the microorganism very efficiently, by competition with molybdate, when nitrate is the nitrogen source, but does not interfere when nitrite or NH(3) is substituted for nitrate. The addition of tungstate to the culture media results in the loss of nitrate reductase activity but does not affect nitrite reductase.  相似文献   

3.
A new method of determination of nitrate was developed, utilizing the nitrate reductase activity ofParacoccus denitrificans in which a further reduction of nitrate is blocked either by a mutation affecting formation of cytochromesc or by inhibition of the electron flow to nitrite reductase by mucidin. After deproteinization of the sample with zinc acetate the nitrite produced is determined colorimetrically. Translated by J. Spížek  相似文献   

4.
In the absence of NADH, at 25 degrees C, partially purified NADH:nitrate reductase undergoes an approximately 50% reduction of its initial activity during 2 h. With the increase of inactivation, the NADH and nitrite concentration time curves become typical "sigmoidal," i.e. the reaction velocity of the nitrate reductase catalyzed reaction goes through a maximum before equilibrium is reached. About 80% of the original activity of nitrate reductase is restored when the enzyme is incubated for 2 min with 200 microM NADH or NADPH. Also other NADH substrate analogues have similar effects in restoring the lost activity. After incubation with the reduced pyridine nucleotides, the sigmoidal appearance of the NADH concentration time curve disappears almost completely. Despite the fact that NADPH increases the activity of the enzyme, NADPH does not show any competition with the NADH-binding site of nitrate reductase and does not produce nitrite in the absence of NADH. It is therefore concluded that there must be an additional allosteric site which binds either NADH or NADPH, or other pyridine nucleotides with the effect of increasing the activity of the enzyme. A kinetic model is presented which simulates the observed experimental findings.  相似文献   

5.
Kemp, John D. (University of California, Los Angeles), and Daniel E. Atkinson. Nitrite reductase of Escherichia coli specific for reduced nicotinamide adenine dinucleotide. J. Bacteriol. 92:628-634. 1966.-A nitrite reductase specific for reduced nicotinamide adenine dinucleotide (NADH(2)) appears to be responsible for in vivo nitrite reduction by Escherichia coli strain Bn. In extracts, the reduction product is ammonium, and the ratio of NADH(2) oxidized to nitrite reduced or to ammonium produced is 3. The Michaelis constant for nitrite is 10 mum. The enzyme is induced by nitrite, and the ability of intact cells to reduce nitrite parallels the level of NADH(2)-specific nitrite reductase activity demonstrable in cell-free preparations. Crude extracts of strain Bn will also reduce hydroxylamine, but not nitrate or sulfite, at the expense of NADH(2). Kinetic observations indicate that hydroxylamine and nitrite may both be reduced at the same active site. The high apparent Michaelis constant for hydroxylamine (1.5 mm), however, seems to exclude hydroxylamine as an intermediate in nitrite reduction. In vitro activity is enhanced by preincubation with nitrite, and decreased by preincubation with NADH(2).  相似文献   

6.
Effects of artificial electron donors to deliver reducing power on enzymic denitrification were investigated using nitrate reductase and nitrite reductase obtained fromOchrobactrum antropi. The activity of nitrite reductase in the soluble portion was almost the same as that in the precipitated portion of the cell extract. Nitrate removal efficiency was higher with benzyl viologen than with methyl viologen or NADH as an artificial electron donor. The turn-over numbers of nitrate and nitrite reductase were 14.1 and 1.9 μmol of nitrogen reduced/min·mg cell extracts, respectively when benzyl viologen was used as an electron donor.  相似文献   

7.
The in vivo nitrate reductase activity in 8 day old dark-grown sugarcane callus was over three fold that of the light-grown callus. NADH (0.3 mM) in the reaction system, increased the in vivo nitrate reductase activity by more than two fold both in the dark- and the light-grown callus tissues. The NADH dependence of nitrate reductase activity followed Michaelian kinetics. The apparent Km values for NADH were 0.083 mM and 0.20 mM, respectively, for the dark- and the light-grown callus. In vivo nitrate reductase activity in green sugarcane leaves (field grown) was unaffected by NADH in the reaction system. Under the standard conditions of assay up to 60% of the NADH penetrated into the sugarcane callus within 2 min. No penetration of NADH into the sugarcane leaf discs was, however, recorded under identical conditions.NCL Communication No. 3454  相似文献   

8.
Nitrate dissimilation in chemostat grown cultures ofClostridium butyricum SS6 has been investigated. Sucrose limited cultures grown on nitrate produced nitrite as the principal end-product of nitrate reduction whilst under nitrate-limiting conditions ammonia accumulated in the spent media. Nitrate reduction was accompanied by the synthesis of a soluble nitrate reductase (123 nmol·NADH oxidised · min-1 · mg protein-1) and in addition, under N-limiting conditions, a soluble nitrite reductase (56 nmol NADH oxidised min-1 · mg protein-1). Corresponding ammonia grown cultures synthesised neither enzyme. Concurrent with the dissimilation of nitrate to nitrite and ammonia cell population densities increased by 18% (C-limitation) and 32% (N-limitation). Spent media analyses of the fermentation products from ammonia and nitrate grown cells showed the accumulation of acetate in nitrate dissimilating cultures. Molar ratios of acetate/butyrate increased by a factor of 5 (C-limitation) to 12 (N-limitation) upon adding nitrate to the growth medium. In C-limited cultures, grown on nitrate, hydrogenase activity was 340 nmol · min-1 · mg protein-1 and under N-limitation this increased to 906 nmol · min-1 · mg protein-1. Since N-limited cultures are electron acceptor limited, the increase in hydrogenase activity enables excess electrons to be spilled by this route.  相似文献   

9.
Nitrate reductase (nitrite: (acceptor) oxidoreductase, EC 1.7.99.4) and trimethylamine N-oxide reductase (NADH : trimethylamine-N-oxide oxidoreductase, EC 1.6.6.9) activities were reconstituted by incubation of the association factor FA (the putative product of the chlB gene) with the soluble extract of the chlB mutant grown anaerobically in the presence of trimethylamine N-oxide. When soluble extracts of the chlB mutant grown on 10 mM sodium tungstate, a molybdenum competitor, were used in complementation systems, no enzymatic reactivation was observed. Heated extracts of the parental strain 541 were shown to contain a thermoresistant molybdenum cofactor by their ability to reactivate NADPH-nitrate reductase activity in the nit1 mutant of Neurospora crassa. By complementation of parental strain heated extract with association factor FA and soluble extract of the chlB mutant grown in the presence of sodium tungstate, we were able to show for the first time that the molybdenum cofactor is an activator common to the in vitro reconstitution of both nitrate reductase and trimethylamine-N-oxide reductase activities.  相似文献   

10.
An evaluation of existing assay procedures for the measurementof nitrate assimilation in the leaves of Zea mays L. has highlightedlimitations in established in vitro assay techniques. Both exogenouslyadded compounds and endogenous leaf components affected theresults of an in vitro nitrate reductase (NADH: oxido-reductase,EC 1.6.6.1 [EC] .) assay. Reducing agents employed as enzyme protectantswere excluded from the assay in order to accurately measurethe concentration of nitrogen compounds by colorimetric andHPLC analysis. Endogenous nitrate levels in a leaf extract asmeasured by these two analytical techniques indicated significantinterference in the colorimetric method due to the presenceof various organic compounds. This interference was most apparentat low nitrate concentrations, however, changes in nitrate concentrationappeared to be more closely comparable between the two techniques.In addition, endogenous leaf components also interfered withthe precise determination of nitrite that had accumulated duringan in vitro nitrate reductase assay. These endogenous factorsacted directly upon the colorimetric assay of nitrite by a concentration-dependentreaction with the diazotizing reagent sulphanilamide. The interferingcomponents were of low molecular weight ( 5000 daltons) andeasily separable from nitrate reductase by molecular sieve chromatography.Their interference in the nitrite assay could only be partiallyprevented by heating or storage, while other treatments studied,including those frequently used to terminate an in vitro assaysuch as zinc acetate precipitation or chloroform extraction,had less effect in alleviating the interference. Similar endogenouscomponents which affected the colorimetric assay of nitritewere also found in leaf extracts from wheat, pea, soybean andsunflower seedlings. Zea mays L., nitrate reductase, reducing agents, plant interference factors  相似文献   

11.
Staphylococcus carnosus reduces nitrate to ammonia in two steps. (i) Nitrate was taken up and reduced to nitrite, and nitrite was subsequently excreted. (ii) After depletion of nitrate, the accumulated nitrite was imported and reduced to ammonia, which again accumulated in the medium. The localization, energy gain, and induction of the nitrate and nitrite reductases in S. carnosus were characterized. Nitrate reductase seems to be a membrane-bound enzyme involved in respiratory energy conservation, whereas nitrite reductase seems to be a cytosolic enzyme involved in NADH reoxidation. Syntheses of both enzymes are inhibited by oxygen and induced to greater or lesser degrees by nitrate or nitrite, respectively. In whole cells, nitrite reduction is inhibited by nitrate and also by high concentrations of nitrite (> or = 10 mM). Nitrite did not influence nitrate reduction. Two possible mechanisms for the inhibition of nitrite reduction by nitrate that are not mutually exclusive are discussed. (i) Competition for NADH nitrate reductase is expected to oxidize the bulk of the NADH because of its higher specific activity. (ii) The high rate of nitrate reduction could lead to an internal accumulation of nitrite, possibly the result of a less efficient nitrite reduction or export. So far, we have no evidence for the presence of other dissimilatory or assimilatory nitrate or nitrite reductases in S. carnosus.  相似文献   

12.
NADH-nitrate reductase (EC 1.6.6.1) was purified 800-fold from roots of two-row barley ( Hordeum vulgare L. cv. Daisen-gold) by a combination of Blue Sepharose and zinc-chelate affinity chromatographies followed by gel filtration on TSK-gel (G3000SW). The specific activity of the purified enzyme was 6.2 μmol nitrite produced (mg protein)−1 min−1 at 30°C.
Besides the reduction of nitrate by NADH, the root enzyme, like leaf nitrate reductase, also catalyzed the partial activities NADH-cytochrome c reductase, NADH-ferricyanide reductase, reduced methyl viologen nitrate reductase and FMNH2-nitrate reductase. Its molecular weight was estimated to be about 200 kDa, which is somewhat smaller than that for the leaf enzyme. A comparison of root and leaf nitrate reductases shows physiologically similar or identical properties with respect to pH optimum, requirements of electron donor, acceptor, and FAD, apparent Km for nitrate, NADH and FAD, pH tolerance, thermal stability and response to inorganic orthophosphate. Phosphate activated root nitrate reductase at high concentration of nitrate, but was inhibitory at low concentrations, resulting in increases in apparent Km for nitrate as well as Vmax whereas it did not alter the Km for NADH.  相似文献   

13.
A nitrate reductase inactivating factor was found in extractsof leaf blades, leaf sheaths, and roots of rice seedlings. Thefactor was nondialyzable, precipitable with (NH4)2SO4, and heatlabile. The factor from rice roots inactivated NADH nitratereductase, FMNH2 nitrate reductase, and NADH cytochrome c reductasefrom rice shoots, but had no effect on the activities of NADHdiaphorase and nitrite reductase. The factors from rice shoots,rice roots, and maize roots inactivated NADH nitrate reductaseprepared from cultured rice cells. The factor from culturedrice cells also inactivated rice shoot NADH nitrate reductase. The activity of the inactivating factor showed a diurnal changein shoots of rice seedlings grown with NO3– medium, althoughthe fluctuation was not large compared to that of NADH nitratereductase activity. When the seedlings were placed in darkness,the activity of the factor did not change during 20 hr withNO3– medium. However, the activity of the factor fluctuatedwith NO3– -free medium in light; its activity startedto increase at the 8th hour after transfer. NADH nitrate reductaseactivity from rice shoots declined rapidly during the first8 hr and gradually thereafter in both types of culture. (Received August 24, 1977; )  相似文献   

14.
NADH:nitrate reductase (EC 1.6.6.1) was isolated and purified from the green cotyledons of 5-day-old squash seedlings (Cucurbita maxima L.). The 10-hour purification procedure consisted of two steps: direct application of crude enzyme to blue Sepharose and specific elution with NADH followed by direct application of this effluent to a Zn2+ column with elution by decreasing the pH of the phosphate buffer from 7.0 to 6.2. The high specific activity (100 micromoles per minute per milligram protein) and high recovery (15-25%) of electrophoretically homogeneous nitrate reductase show that the enzyme was not damaged by exposure to the bound zinc. With this procedure, homogeneous nitrate reductase can be obtained in yields of 0.5 milligram per kilogram cotyledons.  相似文献   

15.
Preparation of a nitrate reductase lysate of Escherichia coli MC1061 to measure nitrate and nitrite in biologic fluids is described. To obtain the crude bacterial lysate containing nitrate reductase activity, E. coli MC1061 was subjected to 16-20 freeze-thawing cycles, from -70 to 60 degrees C, until nitrite reductase activity was < or = 25%. Nitrate reductase activity was detected mainly in the crude preparation. To validate the nitrate reduction procedure, standard nitrate solutions (1.6-100 microM) were incubated with the nitrate reductase preparation for 3 h at 37 degrees C, and nitrite was estimated by the Griess reaction in a microassay. Nitrate solutions were reduced to nitrite in a range of 60-70%. Importantly, no cofactors were necessary to perform nitrate reduction. The biological samples were first reduced with the nitrate reductase preparation. After centrifugation, samples were deproteinized with either methanol/ether or zinc sulfate and nitrite was quantified. The utility of the nitrate reductase preparation was assessed by nitrate+nitrite determination in serum of animals infected with the protozoan Entamoeba histolytica or the bacteria E. coli and in the supernatant of cultured lipopolysaccharide-stimulated RAW 264.7 mouse macrophages. Our results indicate that the nitrate reductase-containing lysate provides a convenient tool for the reduction of nitrate to determine nitrate+nitrite in biological fluids by spectrophotometric methods.  相似文献   

16.
The reduction of nitrate by reduced nicotinamide-adenine dinucleotides, catalysed by extract of Candida utilis, exhibits an apparent high degree of stereospecificity for the 'B' methylene hydrogen atom of NADPH and mixed stereospecificity for the methylene hydrogen atoms of NADH. Purified nitrate reductase, on the other hand, exhibits 'A' stereospecificity for NADH and NADPH. The apparent switch of stereospecificity from the 'B' to the 'A' side of NADPH, which occurs after purification of the enzyme, is partly explained by the fact that in crude extracts nitrate is reduced completely to ammonia. Nitrite does not accumulate but is reduced to ammonia by nitrite dehydrogenase, which is 'B'-specific, so that up to 75% of hydrogen removed from NADPH during the reduction of nitrate could occur from the 'B' side. A further increase in the removal of hydrogen from the 'B' side of NADPH could be the kinetic isotope effect that is observed when ['A'-3H]NADPH is the reductant, the H--C bond being cleaved 2.3 times faster than the 3H--C bond. The mixed stereospecificity observed with NADH has been traced to an uncharacterized enzyme that catalyses a 'B'-specific exchange between NAD+ and NADH. This reaction is discussed in relation to the possibility that it may explain other cases of apparent mixed stereospecificity that have been reported.  相似文献   

17.
The entry of nitrate into the infected region of soybean nodules and the possibility of a subsequent nitrite accumulation was studied. Nitrate was observed to gain access to the infected region in the short-term and significant amounts could be measured within 2 d of nitrate supply. The availability of nitrate in the bacteroid-containing region did not cause free-nitrite accumulation for at least 8d. However, to avoid the artefactual production of nitrite during extraction it was necessary to disrupt nodules in the presence of zinc acetate and ethanol, to prevent bacteroid nitrate reductase activity. Nitrite rapidly accumulated if nodules were extracted without prior enzyme-inactivation, or if bacteroids were allowed access to nitrate, or, more significantly, if nodules were not extracted immediately following detachment. Nitrate accumulation in detached nodules was mediated by oxygen concentration within the nodule; in the presence of pure N2 gas, nitrite accumulation was three times greater than in air and, conversely, it was prevented by exposure to pure O2. Furthermore, nitrite produced in detached nodules under atmospheric conditions was scavenged by transferring these nodules into 100% oxygen. However, measurements of apparent functional leghaemoglobin, using a nodule oximeter, suggested that after 8 d nitrate exposure up to 83% of Lb activity was lost, possibly due to interactions with nitrite produced in the nodule interior leading to the formation of nitrosylleghaemoglobin.Key words: Glycine max, cortex, infected region, leghaemoglobin, nitrate, nitrite, nodules, soybean   相似文献   

18.
Phototrophic bacteria of the genus Rhodobacter possess several forms of nitrate reductase including assimilatory and dissimilatory enzymes. Assimilatory nitrate reductase from Rhodobacter capsulatus E1F1 is cytoplasmic, it uses NADH as the physiological electron donor and reduced viologens as artificial electron donors, and it is coupled to an ammonium-producing nitrite reductase. Nitrate reductase induction requires a high C/N balance and the presence of nitrate, nitrite, or nitroarenes. A periplasmic 47-kDa protein facilitates nitrate uptake, thus increasing nitrate reductase activity. Two types of dissimilatory nitrate reductases have been found in strains from Rhodobacter sphaeroides. One of them is coupled to a complete denitrifying pathway, and the other is a periplasmic protein whose physiological role seems to be the dissipation of excess reducing power, thus improving photoanaerobic growth. Periplasmic nitrate reductase does not use NADH as the physiological electron donor and is a 100-kDa heterodimeric hemoprotein that receives electrons through an electron transport chain spanning the plasma membrane. This nitrate reductase is regulated neither by the intracellular C/N balance nor by O2 pressure. The enzyme also exhibits chlorate reductase activity, and both reaction products, nitrite and chlorite, are released almost stoichiometrically into the medium; this accounts for the high resistance to chlorate or nitrite exhibited by this bacterium. Nitrate reductases from both strains seem to be coded by genes located on megaplasmids. Received: 17 April 1996 / Accepted: 28 May 1996  相似文献   

19.
A barley (Hordeum vulgare L.) mutant, nar1a (formerly Az12), deficient in NADH nitrate reductase activity is, nevertheless, capable of growth with nitrate as the sole nitrogen source. In an attempt to identify the mechanism(s) of nitrate reduction in the mutant, nitrate reductase from nar1a was characterized to determine whether the residual activity is due to a leaky mutation or to the presence of a second nitrate reductase. The results obtained indicate that the nitrate reductase in nar1a differs from the wild-type enzyme in several important aspects. The pH optima for both the NADH and the NADPH nitrate reductase activities from nar1a were approximately pH 7.7, which is slightly greater than the pH 7.5 optimum for the NADH activity and considerably greater than the pH 6.0 to 6.5 optimum for the NADPH activity of the wild-type enzyme. The nitrate reductase from nar1a exhibits greater NADPH than NADH activity and has apparent Km values for nitrate and NADH that are approximately 10 times greater than those of the wild-type enzyme. The nar1a nitrate reductase has apparent Km values of 170 micromolar for NADPH and 110 micromolar for NADH. NADPH, but not NADH, inhibited the enzyme at concentrations greater than 50 micromolar.  相似文献   

20.
The denitrifying bacterium Paracoccus denitrificans can grow aerobically or anaerobically using nitrate or nitrite as the sole nitrogen source. The biochemical pathway responsible is expressed from a gene cluster comprising a nitrate/nitrite transporter (NasA), nitrite transporter (NasH), nitrite reductase (NasB), ferredoxin (NasG) and nitrate reductase (NasC). NasB and NasG are essential for growth with nitrate or nitrite as the nitrogen source. NADH serves as the electron donor for nitrate and nitrite reduction, but only NasB has a NADH-oxidizing domain. Nitrate and nitrite reductase activities show the same Km for NADH and can be separated by anion-exchange chromatography, but only fractions containing NasB retain the ability to oxidize NADH. This implies that NasG mediates electron flux from the NADH-oxidizing site in NasB to the sites of nitrate and nitrite reduction in NasC and NasB respectively. Delivery of extracellular nitrate to NasBGC is mediated by NasA, but both NasA and NasH contribute to nitrite uptake. The roles of NasA and NasC can be substituted during anaerobic growth by the biochemically distinct membrane-bound respiratory nitrate reductase (Nar), demonstrating functional overlap. nasG is highly conserved in nitrate/nitrite assimilation gene clusters, which is consistent with a key role for the NasG ferredoxin, as part of a phylogenetically widespread composite nitrate and nitrite reductase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号